MULTI-TEMP INSTALLATION PROCEDURE

1.0 SELECT LOCATION FOR TUBE CONNECTIONS AND DRAIN connections in accordance with the Mounting Application.

2.0 TIGHTEN ALL MOUNTING BOLTS TO PROVIDE STRONG TIGHTNESS TO THE UNIT. PROVIDE ADDITIONAL MOUNTING SUPPORT TO PREVENT EXCESSIVE MOTION OR VIBRATION.

3.0 THE EVAPORATOR SHOULD BE MOUNTED WITH A 7/8" OD SUCTION LINE FOR THE FIRST THREE FEET IN THE REAR OF A SINGLE DISCHARGE EVAPORATOR. THE SIDE TUBING CONNECTIONS OF A DUAL DISCHARGE EVAPORATOR.

4.0 TROUGH LOCATIONS:

4.1 WHEN USING A WALL TROUGH FOR TUBING AND ELECTRICAL WIRING, THE TROUGH SHOULD BEGIN AT A POINT WHERE THE TROUGH WILL NOT INTERFERENCE WITH EVAPORATOR MOUNTING OR OTHER APPLICATIONS.

4.2 THE REAR OF THE TROUGH SHOULD BEGIN AT A POINT WHERE THE TROUGH WILL NOT INTERFERENCE WITH EVAPORATOR MOUNTING OR OTHER APPLICATIONS.

4.3 THE EVAPORATOR TROUGH SHOULD CONFORM TO A MINIMUM DEPTH OF 4 INCHES FROM THE BOTTOM OF THE TROUGH TO THE THERMAL TUBE TO AVOID INTERFERENCE WITH THE THERMAL TUBE.

4.4 TUBE CONNECTIONS:

5.0 ELECTRICAL CONNECTIONS:

5.1 THE EVAPORATOR FANS AND HEATERS OPERATE ON 460V (NOMINAL), 3 PHASE POWER.

5.2 REMOVE THE CONDENSATE LINE FROM THE END OF THE EVAPORATOR OPPOSITE THE REFRIGERANT CONNECTIONS. USE TWO CAP PLUGS AND SEAL THE DRAIN PAN OUTLET FROM THE OPENING CREATED.

5.3 USE TWO CAP PLUGS AND SEAL THE DRAIN PAN OUTLET FROM THE OPENING CREATED.

5.4 FIT SHIMS UNDER THE MOUNTING BOLTS IN ORDER TO TILT THE EVAPORATOR 3/4" EFFECTIVELY DRAIN TO ONE SIDE OF THE UNIT.

5.5 THE 1100 EVAPORATOR USES ONLY ONE OF THE TWO DEFROST DRAINS. THE UNUSED DRAIN IS PLUGGED WITH PLUG PROVIDED WITH THE EVAPORATOR. USE 2 SHIMS UNDER BOLT CLOSEST TO WALL, ONE SHIM ON CENTER BOLT AND NO SHIMS ON BOLT IN CENTER OF TRAILER.

5.6 THE 2200 WIDTH EVAPORATOR USES BOTH DEFROST DRAINS.

5.7 DEFROST DRAIN TUBES PROVIDED BY THE TRAILER MANUFACTURER SHOULD BE CENTERED ON THE EVAPORATOR AND THE EVAPORATOR WIRE HARNESS TO THE HOST UNIT.

5.8 THE 2200 WIDTH EVAPORATOR USES BOTH DEFROST DRAINS.

5.9 THE 1100 EVAPORATOR USES ONLY ONE OF THE TWO DEFROST DRAINS. THE UNUSED DRAIN IS PLUGGED WITH PLUG PROVIDED WITH THE EVAPORATOR. USE 2 SHIMS UNDER BOLT CLOSEST TO WALL, ONE SHIM ON CENTER BOLT AND NO SHIMS ON BOLT IN CENTER OF TRAILER.

5.10 DEFROST DRAIN TUBES PROVIDED BY THE TRAILER MANUFACTURER SHOULD BE CENTERED ON THE EVAPORATOR AND THE EVAPORATOR WIRE HARNESS TO THE HOST UNIT.

5.11 THE 1100 EVAPORATOR USES ONLY ONE OF THE TWO DEFROST DRAINS. THE UNUSED DRAIN IS PLUGGED WITH PLUG PROVIDED WITH THE EVAPORATOR. USE 2 SHIMS UNDER BOLT CLOSEST TO WALL, ONE SHIM ON CENTER BOLT AND NO SHIMS ON BOLT IN CENTER OF TRAILER.

5.12 DEFROST DRAIN TUBES PROVIDED BY THE TRAILER MANUFACTURER SHOULD BE CENTERED ON THE EVAPORATOR AND THE EVAPORATOR WIRE HARNESS TO THE HOST UNIT.

5.13 THE 1100 EVAPORATOR USES ONLY ONE OF THE TWO DEFROST DRAINS. THE UNUSED DRAIN IS PLUGGED WITH PLUG PROVIDED WITH THE EVAPORATOR. USE 2 SHIMS UNDER BOLT CLOSEST TO WALL, ONE SHIM ON CENTER BOLT AND NO SHIMS ON BOLT IN CENTER OF TRAILER.

5.14 THE 1100 EVAPORATOR USES ONLY ONE OF THE TWO DEFROST DRAINS. THE UNUSED DRAIN IS PLUGGED WITH PLUG PROVIDED WITH THE EVAPORATOR. USE 2 SHIMS UNDER BOLT CLOSEST TO WALL, ONE SHIM ON CENTER BOLT AND NO SHIMS ON BOLT IN CENTER OF TRAILER.

5.15 THE 1100 EVAPORATOR USES ONLY ONE OF THE TWO DEFROST DRAINS. THE UNUSED DRAIN IS PLUGGED WITH PLUG PROVIDED WITH THE EVAPORATOR. USE 2 SHIMS UNDER BOLT CLOSEST TO WALL, ONE SHIM ON CENTER BOLT AND NO SHIMS ON BOLT IN CENTER OF TRAILER.

5.16 THE 1100 EVAPORATOR USES ONLY ONE OF THE TWO DEFROST DRAINS. THE UNUSED DRAIN IS PLUGGED WITH PLUG PROVIDED WITH THE EVAPORATOR. USE 2 SHIMS UNDER BOLT CLOSEST TO WALL, ONE SHIM ON CENTER BOLT AND NO SHIMS ON BOLT IN CENTER OF TRAILER.

5.17 THE 1100 EVAPORATOR USES ONLY ONE OF THE TWO DEFROST DRAINS. THE UNUSED DRAIN IS PLUGGED WITH PLUG PROVIDED WITH THE EVAPORATOR. USE 2 SHIMS UNDER BOLT CLOSEST TO WALL, ONE SHIM ON CENTER BOLT AND NO SHIMS ON BOLT IN CENTER OF TRAILER.

5.18 THE 1100 EVAPORATOR USES ONLY ONE OF THE TWO DEFROST DRAINS. THE UNUSED DRAIN IS PLUGGED WITH PLUG PROVIDED WITH THE EVAPORATOR. USE 2 SHIMS UNDER BOLT CLOSEST TO WALL, ONE SHIM ON CENTER BOLT AND NO SHIMS ON BOLT IN CENTER OF TRAILER.

5.19 THE 1100 EVAPORATOR USES ONLY ONE OF THE TWO DEFROST DRAINS. THE UNUSED DRAIN IS PLUGGED WITH PLUG PROVIDED WITH THE EVAPORATOR. USE 2 SHIMS UNDER BOLT CLOSEST TO WALL, ONE SHIM ON CENTER BOLT AND NO SHIMS ON BOLT IN CENTER OF TRAILER.

5.20 THE 1100 EVAPORATOR USES ONLY ONE OF THE TWO DEFROST DRAINS. THE UNUSED DRAIN IS PLUGGED WITH PLUG PROVIDED WITH THE EVAPORATOR. USE 2 SHIMS UNDER BOLT CLOSEST TO WALL, ONE SHIM ON CENTER BOLT AND NO SHIMS ON BOLT IN CENTER OF TRAILER.
SUPERHEAT ADJUSTMENT PROCEDURE

REMOTE EVAPORATOR SUPERHEAT ADJUSTMENT PROCEDURE IS CRITICAL TO PROPER UNIT OPERATION AND RELIABILITY. IN ORDER TO AVOID POTENTIAL PERFORMANCE FROM BOTH THE REMOTE EVAPORATOR AND THE HOST UNIT, THE SUPERHEAT MUST BE ADJUSTED FOLLOW THESE SIMPLE STEPS TO SET AND ADJUST REMOTE EVAPORATOR SUPERHEAT:

1. PLACE A THERMOCOUPLE AS CLOSE AS ONE CAN GET TO THE TXV SENSING BULB, LOCATED ON THE SUCTION LINE. TO DO THIS, ONE MUST OPEN THE PRESTITE TAPE AROUND THE TXV SENSING BULB AREA. IN ORDER TO KEEP ACCURATE READING FROM THE THERMOCOUPLE, IT SHOULD BE INSTALLED ON THE COPPER TUBING NEXT TO THE SENSING BULB, AND IT SHOULD BE FASTENED AT THE TOP OF THE TXV. THE TXV BULB TEMPERATURE MUST BE PLACED BACK ON AND SECURED WITH A BAND CLAMP. CLOSE THE FAN GRILLE.

IMPORTANT: ON EVAPORATORS WITH 2 TXV'S, THERMOCOUPLE IS ONLY REQUIRED ON 1 TXV.

2. CONNECT A SUCTION PRESSURE GAUGE TO THE FLARE FITTING WITH SCHRADER VALVE.

3. THERE IS AN EXTERNAL ADJUSTMENT SCREW ON THE SIDE OF THE TXV. FIRST, TURN CLOCKWISE TO FULLY CLOSE TXV. THEN, STARTING FROM THE FULLY CLOSED POSITION, TURN COUNTERCLOCKWISE AND STOP AFTER A COMPLETE TURN TO COMPLETE THIS SCREW ADJUSTMENT.

IMPORTANT: ON EVAPORATORS WITH 2 TXV'S, DO SAME ADJUSTMENT ON BOTH TXV'S.

1. SET THE MOST RECENT TXV SUPERHEAT TO THE MAXIMUM VALUE IN STEPS WITH STEEL SUBMERGED GLASS SERVICE BULLET AND INTERNAL TEMPERATURE FUNCTION. A THICK METAL THERMOCOUPLE CAN BE PLACED INSIDE A TXV SENSING BULB AREA TO KEEP HEM THERMOCOUPLE HEAT UP TO ENSURE PROPER TEMPERATURE. TEW-THERMOCOUPLE TEMPERATURE AS SHORT AS POSSIBLE TO 120°F TO AVOID COLD SPOT. ONE CAN ACHIEVE THE SUPERHEAT AND ENSURE THE TXV BULB TEMPERATURE IS INCREASED TO 360 °F. USE THE PRESTITE TAPE INSULATION AND A PIECE OF ELECTRICAL TAPE TO SECURE THE THERMOCOUPLE. SPRAY THE CONDENSATE SUMP INSIDE THE UNIT.

IMPORTANT: ON EVAPORATORS WITH 2 TXV'S, IF ADJUSTMENT IS MADE ON THE TXV WITH THERMOCOUPLE, MAKE SAME ADJUSTMENT ON THE OTHER TXV.

2. USE A PRESSURE-THEOREM THERMOCOUPLE FOR R404A REFRIGERANT TO READING 2 MINUTE after the TXV HAS BEEN CLOSED TO FULLY CLOSE TXV. THE TIME BETWEEN THE TXV HAS BEEN CLOSED TO FULLY CLOSE TXV AND THE CONNECTION OF THE TXV HAS BEEN CLOSED TO FULLY CLOSE TXV.

3. USE a MICROPROCESSOR TO CONVERT SUCTION PRESSURE TO TEMPERATURE. FOR ADDITIONAL VERIFICATION, SUCTION TEMPERATURE MINUS THE CONVERTED TEMPERATURE EQUALS SUCTION SUPERHEAT. THE AVERAGE VALUE OF THE TXV HAS BEEN CLOSED TO FULLY CLOSE TXV AND THE CONNECTION OF THE TXV HAS BEEN CLOSED TO FULLY CLOSE TXV.

IMPORTANT: ON EVAPORATORS WITH 2 TXV'S, IF ADJUSTMENT IS MADE ON THE TXV, THEN THE OTHER TXV SHOULD BE CLOSED TO FULLY CLOSE TXV.

4. REPEAT STEP #5 TO CONFIRM SUPERHEAT ADJUSTMENT OF TXV. IF SUPERHEAT IS NOT CONSISTENTLY AT THE DESIRED VALUE, ONE NEEDS TO ADJUST THE TXV.

5. ONE COMPLETE TURN OF 360 °F WILL GENERATE APPROXIMATELY 7 F OF SUPERHEAT. TO INCREASE SUPERHEAT, TURN IT CLOCKWISE, AND TO DECREASE SUPERHEAT, TURN IT COUNTERCLOCKWISE. AFTER ADJUSTMENT IS COMPLETED, PLEASE REPEAT STEP #5.

6. READ COMPRESSOR SUCTION TEMPERATURE AND PRESSURE FROM THE MICROPROCESSOR. CONVERT THE SUCTION PRESSURE TO TEMPERATURE USING THE MICROPROCESSOR. SUCTION TEMPERATURE MINUS THE CONVERTED TEMPERATURE EQUALS SUCTION SUPERHEAT. AS AN ADDITIONAL VERIFICATION, SUCTION TEMPERATURE SHOULD BE BETWEEN 0-30 °F.

IMPORTANT: ON EVAPORATORS WITH 2 TXV'S, IF ADJUSTMENT IS MADE ON THE TXV, THEN THE OTHER TXV SHOULD BE CLOSED TO FULLY CLOSE TXV.
INSTALLATION TIPS

1. USE FLAT FLOORING IN THE FLOOR SECTION UNDER THE BULKHEAD.
2. PROVIDE A THERMAL BREAK IN THE FLOOR UNDER THE BULKHEAD FOR MOBILE LOCATION BULKHEADS, USE RUBBERIZED HARDWOOD FLOORS.
3. COVER REFRIGERANT LINES TO AVOID IMPACT DAMAGE.
4. INSTALL A GUARD AROUND THE EVAPORATOR TO PREVENT IMPACT DAMAGE.

OUTSIDE LAYER
INSULATION

VERTICAL FRAMING (NON-CONDUCTIVE)

INSIDE LAYER

1/2-13 STUD, THREADED FULL LENGTH.
MUST SUPPORT WEIGHT OF EVAP.
(GRADE 5 OR BETTER)
TORQUE HARDWARE TO 60 FT-LBS
[81 Nm]
**TUBING INSTRUCTIONS**

1. BELLS ON TUBES FROM HOST ARE MEANT TO ACCEPT 3/8" AND 1 1/8" REFRIGERATION TUBING.
2. MAKE TUBING CONNECTIONS USING ITEMS 40, 45, 50, 55 & 60.
3. ROUTE TUBING TO REAR EVAPORATORS TO MINIMIZE EXPOSURE TO DAMAGE.
4. FOR COPPER TO COPPER BRAZING IT IS REQUIRED THAT A BRAZING MATERIAL OF 15% SILVER, 5% PHOSPHOROUS IS USED (FLUX IS NOT REQUIRED FOR COPPER TO COPPER JOINTS). SOFT SOLDER BRAZING MATERIAL IS NOT RECOMMENDED.
5. CLOSED CELL FOAM INSULATION IS PROVIDED TO COVER THE ENTIRE SUCTION LINE LENGTH.
6. IF A CEILING TROUGH IS INSTALLED FOR A MHD EVAP, THE TROUGH SHOULD ANGLE TO THE SIDE WALL AT THE CENTER OF THE EVAP.
7. IT IS RECOMMENDED TO REMOVE ACCESS PANEL FROM BACK PANEL AND MOVE ELECTRICAL CABLE AWAY FROM TUBING BEFORE BRAZING REFRIGERANT TUBING AT HOST UNIT.

**REFRIGERANT LINE ROUTING**
- **CEILING TROUGH CONFIGURATION**
- **WALL TROUGH CONFIGURATION**

**SINGLE AND DUAL DISCHARGE REMOTE EVAP INSTALLATION**
(2 REMOTE COMPARTMENTS SHOWN FOR ILLUSTRATION ONLY)

**ACCESS PANEL** (SEE NOTE #7)

**ADD PLUG (ITEM #85)** AFTER BRAZING IS COMPLETE
INSTALLATION INSTRUCTIONS

2 COMPARTMENT INSTALLATION

CLAMP TUBES & CABLE SECURELY INSIDE TROUGH TO PREVENT DAMAGE FROM VIBRATION. SPACING BETWEEN CLAMPS NOT TO EXCEED 24".

(SEE SHEET 6 FOR CLAMPING REQUIRED FOR COPPER TROUGH INSTALLATIONS)

HIGH VOLTAGE LABELS-PLACE ON TROUGH COVER APPROXIMATELY EVERY 5.0'.

WARNING

CAUTION: 12V LINES ARE NOT TO BE CLAMPED TO THE 460V LINES

3 COMPARTMENT INSTALLATION

CLAMP TUBES & CABLE SECURELY INSIDE TROUGH TO PREVENT DAMAGE FROM VIBRATION. SPACING BETWEEN CLAMPS NOT TO EXCEED 24".

(SEE SHEET 6 FOR CLAMPING REQUIRED BY UTILITY TRAILER ENGINEERING)

HIGH VOLTAGE LABELS-PLACE ON TROUGH COVER APPROXIMATELY EVERY 5.0'.

SEE GROUNDING PROCEDURES ON SHEET 6
IMPORTANT

Make sure all wires are properly secured away from any surfaces or edges that can result in chafing.

RECOMMENDED GROUNDING PROCEDURE

TO GROUND THE HOST UNIT

1. Locate the 8 GA. GREEN GROUND WIRE from the host unit and route to trough. Use the proper crimping tool to crimp the wire to the trough. The ground plate (item 115) should be attached to the trough using the hardware provided in the trough.

2. Secure the wire to the high voltage lines using wire ties (item 80).

IMPORTANT

Make sure all wires are properly secured away from any surfaces or edges that can result in chafing.

ALTERNATE GROUNDING PROCEDURE

TO GROUND THE HOST UNIT

1. Connect and route the 8 GA. GREEN GROUND WIRE from the host unit to the trough.

2. Secure the wire to the high voltage lines using wire ties (item 80).

TO GROUND THE REMOTE EVAPORATOR

1. Attach the 8 GA. GREEN GROUND WIRE to the ground stud inside the remote using the stainless steel nuts on the unused stud in the remote. Route the wire to the trough. Attach the wire to the trough using the hardware supplied in the trough.

IMPORTANT

Make sure all wires are properly secured away from any surfaces or edges that can result in chafing.

NOTE 2

DO NOT USE SELF-TAPPING SCREW FOR GROUND CONNECTION TO TROUGH DUE TO CORROSION RISK.

NOTE 3

IF TROUGH COVER IS ALUMINUM, TROUGH COVER MUST BE BONDED TO TROUGH.

NOTE 4

IF TROUGH IS NOT ALUMINUM & COVER IS ALUMINUM, SECURE GROUND PLATE ASSY ON INSIDE OF THE COVER USING RECOMMENDED GROUNDING PROCEDURE.

NOTE 5

CONTACT APPLICATION OR SERVICE ENGINEERING WITH ANY QUESTIONS.

NOTE 6

COMPLETE CONTINUITY AND DIELECTRIC TESTS PER THE PRE-DELIVERY INSPECTION (PDI) SHEET.

IMPORTANT NOTES

1. Do not use the recommended ground stud for securing components to trough or to connecting reels.

2. Any components having ground stud are already secured to the ground stud using recommended procedure.

3. Do not use the ground plate to bond together to connect to the ground. Use the recommended procedure for bonding.

4. Connect all equipment to the ground when applicable.

5. Complete the recommended procedure for attaching the ground plate to the trough.

6. Do not use self-tapping screw for ground connection to trough due to corrosion risk.

7. If trough cover is aluminum, trough cover must be bonded to trough.

8. If trough is not aluminum & cover is aluminum, secure ground plate assy on inside of the cover using recommended grounding procedure.

9. Contact application or service engineering with any questions.

10. Complete continuity and dielectric tests per the pre-delivery inspection (PDI) sheet.
SYM

REV

DRAWING NO.

TITLE

THIRD ANGLE

PROJECTION

HARNESS CONNECTOR UNIT END

HARNESS CONNECTOR UNIT END

ATTENTION: GROUND WIRE SHOULD BE LONG ENOUGH TO ATTACH TO GROUND STUD ON THE INSIDE OF THE SIDE PLATE OF EVAPORATOR.

NOTES:
1.0 REMOVE THE PLATE SIDE WHERE THE REFRIGERANT CIRCUIT IS, TAKE THE PLASTIC BAG WHICH IS FIXED WITH THE HARNESS EVAPORATOR.
2.0 CUT THE HARNESS TO LENGTH CRIMP THE APPROPRIATE TERMINALS AND CONNECT THE DEUTSCH CONNECTOR, BLACK FOR LOW VOLTAGE CONNECTOR C1 USING DEUTSCH TOOL # 07-00397-02
3.0 CUT OFF THE HIGH VOLTAGE C2 & C3 CONNECTORS (ON THE REMOTE EVAP. SIDE) AND WIRE ACCORDING TO THE CHART
4.0 USE THE BUTT SPLICES (CTD P/N 22-01292-02) & HEAT SHRINK TUBING (CTD P/N 22-60309-05) PROVIDED IN A PLASTIC BAG ATTACHED TO THE HARNESS IN THE REMOTE EVAP.
4.1 USE THE PROPER CRIMPING TOOL CTD P/N 07-00496-00.
MUST USE HEAT SHRINK WITH EPOXY MELT LINER
5.0 IMPORTANT:
FOR MHS1100 & 2200 REMOTE EVAPS, WIRES RED 4, RED 5, AND RED 6 (SEE CHART) FROM HOST UNIT ARE NOT CONNECTED TO ANY WIRES IN THE REMOTE EVAP. BUT MUST BE SEALED OFF USING THE HEAT SHRINK TUBING PROVIDED WITH REMOTE EVAPS. USE A PAIR OF NEEDLE NOSE PLIERS TO FOLD THE END OF TUBING WHILE STILL WARM.
6.0 CHECK THAT THE FANS, WHEN OPERATING DO NOT INTERFERE WITH THE INLET RING FANS.
7.0 DURING TEST MAKE SURE FANS ARE OPERATING IN THE CLOCKWISE DIRECTION.
8.0 CONNECTOR AND SPLICES MUST BE PLACED INSIDE REMOTE EVAP AND FASTENED AS HIGH IN EVAP AS POSSIBLE TO AVOID WATER ACCUMULATION.
9.0 DO NOT BEND PVC SLEEVING, AS TO AVOID OPENING THE CONNECTOR SEALS AND LOSE WATER PROOF SEAL.

HARNESS CONNECTOR REMOTE END REMOTE EVAPORATOR CONNECTOR

C1
12 WAY CONNECTOR/BLACK

COLOR & MARKING GAGE/MM2
BLUE "1" 16/1
WHITE "1" 12/3
PURPLE "1" 16/1
WHITE "2" 12/3
GREEN "1" 12/3
PINK "1" 16/1
GREY "1" 12/1
BROWN "1" 22/0.35
BROWN "2" 22/0.35
YELLOW "1" 22/0.35
YELLOW "2" 22/0.35
GREY "1" 16/1

MULTI-TEMP HARNESS WIRE DIAGRAM FOR MHS AND MHD 1100/2200

IMPERIAL INCH FORMAT:
UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES WITH METRIC CONVERSIONS IN [MILLIMETERS]

CEILING TRAILER

PVC SLEEVING

CONNECTOR C1

TY-WRAP

COPPER TUBING

CONNECTOR CT

CONNECTIONS GROUND WITH WIRE OF APPROPRIATE GAUGE, GROUND TIED ON THE INSIDE OF THE SIDE PLATE OF EVAPORATOR.
ACCEPTANCE OF CONTRACT DOES NOT CONSTITUTE PART PERFORMANCE OR SUBMISSION OF THESE DRAWINGS OR DOCUMENTS

SCHHEMATIC FOR INFORMATION ONLY.
EXACT PIPING TO BE DETERMINED BY REMOTE EVAPORATOR STYLE, APPLICATION AND LOCATION.

HOST UNIT

REMOTE EVAPORATOR

REMOTE EVAPORATOR

SUCTION LINE

LIQUID LINE

COMP 1

COMP 2

COMP 3

COMP 4

COMP 5

COMP 6

SYSTEM 5

SYSTEM 6

SYSTEM 7

3 COMPARTMENT SYSTEMS WITH TWO 1100 SIZE REMOTE EVAPORATORS
3 COMPARTMENT SYSTEMS WITH ONE 1100 SIZE REMOTE EVAPORATOR
AND ONE 2200 REMOTE EVAPORATOR!
RETURN AIR

SUPPLY AIR

LIQUID LINE

3/8 OD TUBE

SUCTION LINE

7/8 OD TUBE

HARNESS ACCESS

MHD-1100

117 LBS

[53.1 KG]

MHD-1100-2

DRAIN CONNECTION

DRAIN CONNECTION

CONVERSION CHART

DECIMAL INCHES

FRACTIONAL INCHES

1.61 1-5/8

1.75 1-3/4

1.77 1-25/32

2.17 2-3/16

2.69 2-25/32

2.83 2-27/32

3.13 3-1/8

3.46 3-15/32

4.26 4-1/4

5.43 5-7/16

5.45 5-7/16

5.83 5-13/16

7.03 7-1/32

10.85 10-27/32

15.72 15-23/32

17.72 17-23/32

31.42 31-13/32

34.65 34-21/32

41.10 41-3/32

IMPERIAL INCH FORMAT: UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES WITH METRIC CONVERSIONS IN MILLIMETERS