TABLE OF CONTENTS

SAFETY CONSIDERATIONS...2
INTRODUCTION..2
UNIT IDENTIFICATION...2
PRODUCT OFFERING...4
FAN MOTOR SPEED TAPS..4
FA4A, FB4A, FC4B, FF1D, FH4A, AND FX4A
CIRCUIT BOARD FUNCTION AND TROUBLESHOOTING
— CES013003-00 and -01 PCB..2-7
• Printed Circuit Board Component Layout and Description......2
• Unit Functions ...2
• Troubleshooting PCB...5
CIRCUIT BOARD FUNCTION AND TROUBLESHOOTING
— HK61GA001 and HK61GA003 PCB..8-19
• Printed Circuit Board Component Layout and Description.....8
• PCB Component Functions..9
• Troubleshooting PCB...11
ELECTRIC HEATER FUNCTION
AND TROUBLESHOOTING..19
• Description of Electric Heater Components........................19
• Troubleshooting KFA, KFB, KFC, and KFD Series.................19
Electric Heaters...20
FAN COIL DESCRIPTION
AND TROUBLESHOOTING — FK4B20-27
• Integrated Controls and Motor (ICM2)...............................20
• PCB Layout and Description..20
• Sequence of Operation..21
• Easy Select Configuration Taps..22
• Troubleshooting PCB...24
• Troubleshooting ICM2...26
• Condensed Version of Troubleshooting FK4B Motor
 and Controls...26
• Accessories..27
FAN COIL DESCRIPTION
AND TROUBLESHOOTING — FK4C, FV4A28-34
• Integrated Controls and Motor (ICM2)...............................28
• PCB Layout and Description..28
• Sequence of Operation..28
• Easy Select Configuration Taps..30
• Troubleshooting PCB...32
• Troubleshooting ICM2...34
• Condensed Version of Troubleshooting
 FK4C, FV4A Motor and Controls...34
• Accessories..34
THERMOSTATIC EXPANSION VALVES (TXV).....................35
• Problems Affecting TXV..36
PISTON BODY CLEANING OR REPLACEMENT....................36
LIQUID TUBE STRAINER..36
FA, FB, FC, FK COIL/CONDENSATE PAN
REMOVAL AND REPLACEMENT..36
• A-Coil Units..36
• Slope Coil Units...37
FX, FV COIL/CONDENSATE PAN REMOVAL
AND REPLACEMENT..38

CARE AND MAINTENANCE..39
• Filter Assembly...39
• Cooling Coil, Drain Pan, and Condensate Drain................39
• Blower Motor and Wheel..39
FF1A/FF1B/FF1C SERVICE AND
TROUBLESHOOTING..40-42
• Fan Motor...40
• Electric Heater Service...40
• Cleaning or Replacing Refrigerant Flow-Control Device40
• Liquid Tube Strainer..40
• Sequence of Operation...40
• Care and Maintenance...40
FD3A SERVICE AND TROUBLESHOOTING.........................44-45
• Fan Motor...44
• Electric Heater Service...44
• Cleaning or Replacing Refrigerant Flow-Control Device44
• Liquid Tube Strainer..44
• Care and Maintenance...45
FG3A SERVICE AND TROUBLESHOOTING.........................45-46
• Service ...45
 • Maintenance..46
FA4A, FB4A, FC4B, FX4A SMART HEAT CIRCUIT
BOARD FUNCTION AND TROUBLESHOOTING..46-50
• PCB Component Layout, Description, and Function............46
 • Unit Functions...46
 • Smart Heat Operation..47
 • Electrical Operating Sequences and Troubleshooting........48
PURON® (R-410A) QUICK REFERENCE GUIDE....................50

Fig. 1—Typical Fan Coil
When you see this symbol on the unit or in safety-alert symbol It is important to recognize safety information. This is the requirements. codes and National Electrical Code (NEC) for special installation warnings or cautions attached to the unit. Consult local building available. Read these instructions thoroughly and follow all quenching cloth for brazing operations. Have fire extinguisher Follow all safety codes. Wear safety glasses and work gloves. Use agency must use factory-authorized kits or accessories when modifying this product. Refer to the individual installation instructions packaged with the kits or accessories for detailed information. Understand the signal words DANGER, WARNING, and CAUTION. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies hazards which could result in personal injury or death. CAUTION is used to identify unsafe practices which would result in minor personal injury or product and property damage.

CAUTION: Puron (R-410A) systems operate at higher pressures than R-22 systems. Do not use R-22 service equipment or components on R-410A equipment. Ensure service equipment is rated for R-410A.

CAUTION: Before installing or servicing fan coil, always turn off all power to unit. There may be more than 1 disconnect switch. Turn off accessory heater power if applicable. Electrical shock can cause personal injury or death.

INTRODUCTION

The "F" series fan coil units are designed for flexibility in a variety of applications, meeting upflow, horizontal, or downflow requirements. Units are available in 1-1/2 through 5 ton nominal cooling capacities. Factory-authorized, field-installed electric heater packages are available in 3 through 30 kilowatts.

WARNING: The 16 position numbering chart allows identification of all available fan coil units. (See Fig. 2.)

FA4A, FB4A, FC4B, FF1D, FH4A, AND FX4A

CIRCUIT BOARD FUNCTION AND TROUBLESHOOTING

CES0130003-00 and -01 PCB

This section of the service manual describes the CES0130003-00 and -01 PCB by examining the functional operation of the PCB components.

I. PRINTED CIRCUIT BOARD (PCB) COMPONENT LAYOUT AND DESCRIPTION

Layout of the actual PCB is depicted in Fig. 3A.

1. The low-voltage stripped leads are used to connect the 24-v side of transformer to indoor thermostat and outdoor section.
Fig. 2—Fan Coil 16-Position Numbering System
TABLE 1—PRODUCT OFFERING

<table>
<thead>
<tr>
<th>MODEL</th>
<th>UNIT SIZE</th>
<th>DESCRIPTION</th>
<th>CABINET</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA4ANF</td>
<td>018-060</td>
<td>MultiPoise</td>
<td>Single Piece</td>
</tr>
<tr>
<td>FB4ANB</td>
<td>042-070</td>
<td>MultiPoise</td>
<td>Modular</td>
</tr>
<tr>
<td>FB4ANF</td>
<td>018-060</td>
<td>MultiPoise</td>
<td>Single Piece</td>
</tr>
<tr>
<td>FB4ASB</td>
<td>042-060</td>
<td>MultiPoise</td>
<td>50 Hz Modular</td>
</tr>
<tr>
<td>FB4ASF</td>
<td>018-060</td>
<td>MultiPoise</td>
<td>Single Piece</td>
</tr>
<tr>
<td>FC48NB</td>
<td>042-070</td>
<td>MultiPoise</td>
<td>Modular</td>
</tr>
<tr>
<td>FC48NF</td>
<td>024-060</td>
<td>MultiPoise</td>
<td>Single Piece</td>
</tr>
<tr>
<td>FD3ANA</td>
<td>018-030</td>
<td>Horizontal</td>
<td>Single Piece</td>
</tr>
<tr>
<td>FF1A/FF1B/FF1C/FF1D</td>
<td>018-030</td>
<td>Vertical</td>
<td>Single Piece</td>
</tr>
<tr>
<td>FG3ANA</td>
<td>024, 036, 048, 060</td>
<td>Horizontal/Small Commercial</td>
<td>Single Piece</td>
</tr>
<tr>
<td>FH4ANB</td>
<td>003, 004</td>
<td>MultiPoise</td>
<td>Modular</td>
</tr>
<tr>
<td>FH4ANF</td>
<td>001-004</td>
<td>MultiPoise</td>
<td>Single Piece</td>
</tr>
<tr>
<td>FK4CNB</td>
<td>006</td>
<td>MultiPoise</td>
<td>Modular</td>
</tr>
<tr>
<td>FK4CNF</td>
<td>001-005</td>
<td>MultiPoise</td>
<td>Single Piece</td>
</tr>
<tr>
<td>FX4ANF</td>
<td>030-048</td>
<td>MultiPoise</td>
<td>Single Piece</td>
</tr>
<tr>
<td>FX4ANB</td>
<td>060</td>
<td>MultiPoise</td>
<td>Modular</td>
</tr>
<tr>
<td>FV4ANF</td>
<td>002, 003, 005</td>
<td>MultiPoise</td>
<td>Single Piece</td>
</tr>
<tr>
<td>FV4ANB</td>
<td>006</td>
<td>MultiPoise</td>
<td>Modular</td>
</tr>
</tbody>
</table>

NOTE: MultiPoise units are approved for upflow, downflow, and horizontal left and right applications.

TABLE 2—PSC FAN MOTOR SPEED TAPS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>UNIT SIZE</th>
<th>NUMBER OF SPEEDS</th>
<th>HIGH SPEED</th>
<th>MEDIUM SPEED</th>
<th>LOW SPEED</th>
<th>COMMON</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA4A</td>
<td>018-036</td>
<td>2</td>
<td>Black</td>
<td>—</td>
<td>Blue</td>
<td>Yellow</td>
</tr>
<tr>
<td>FA4A</td>
<td>042-060</td>
<td>3</td>
<td>Black</td>
<td>Blue</td>
<td>Red</td>
<td>Yellow</td>
</tr>
<tr>
<td>FB4A</td>
<td>018-070</td>
<td>3</td>
<td>Black</td>
<td>Blue</td>
<td>Red</td>
<td>Yellow</td>
</tr>
<tr>
<td>FC4B</td>
<td>024-070</td>
<td>3</td>
<td>Black</td>
<td>Blue</td>
<td>Red</td>
<td>Yellow</td>
</tr>
<tr>
<td>FD3A</td>
<td>018-030</td>
<td>2</td>
<td>Black</td>
<td>—</td>
<td>Red</td>
<td>Yellow</td>
</tr>
<tr>
<td>FF1A/FF1B/FF1C/FF1D</td>
<td>018-030</td>
<td>2</td>
<td>Black</td>
<td>—</td>
<td>Red</td>
<td>Violet**</td>
</tr>
<tr>
<td>FG3A</td>
<td>024, 036, 048, 060</td>
<td>1*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>FH4A</td>
<td>001-004</td>
<td>3</td>
<td>Black</td>
<td>Blue</td>
<td>Red</td>
<td>Yellow</td>
</tr>
<tr>
<td>FX4A</td>
<td>030-060</td>
<td>3</td>
<td>Black</td>
<td>Blue</td>
<td>Red</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

*Belts drive.

**Yellow on FF1D

Fig. 3A—Fan Coil Printed-Circuit Board
When thermostat sends a signal to W2, a 24-vac signal is applied across sequencer/relay number 1, causing it to close. When sequencer/relay number 1 closes, first stage of electric heat is energized. In straight electric heat, fan is also energized through the normally-closed contacts of fan relay. In cooling, heat pump, or manual fan mode, fan will already be running since fan relay would have been energized. When thermostat stops calling for electric heat, the 24-vac signal applied to sequencer/relay number 1 turns off and sequencer opens after a delay of 60 to 90 sec. Heaters equipped with relays will be de-energized immediately. When sequencer/relay opens, first stage of heat turns off along with fan, providing thermostat is not calling for the fan.

When thermostat sends a signal to E, a 24-vac signal is sent to sequencer/relay number 3. The 24-vac signal applied to sequencer/relay number 3 turns on third stage of electric heat. The 24-vac signal applied to sequencer/relay number 1 turns on first stage of electric heat and fan. When thermostat stops calling for electric heat, the signal to sequencers/relays 1, 2, and 3 are turned off, and sequencers/relays open. This causes electric heat to turn off with fan providing thermostat is not calling for the fan.

NOTE: Electric heaters are factory wired with all stages tied together. If independent staging is desired, consult outdoor thermostat installation instructions, or corporate thermostat instructions.

III. TROUBLESHOOTING THE PRINTED-CIRCUIT BOARD

Use wiring schematics shown in Fig. 4 and 5 as a guide in troubleshooting PCB unless otherwise noted.

A. If Fan Will Not Turn On from Thermostat:

IF THERE IS NO HIGH VOLTAGE TO TRANSFORMER:

1. Check plug/receptacle connection. This supplies power from heaters to PCB Fan Relay. Be sure plug is connected properly.
2. Check sequencer/relay number 1 and plug wiring. Yellow wire should be connected to pin number 9 of plug and to limit switch. Black wire should be connected to pin number 7 of plug and to sequencer/relay number 1.

3. Check field power leads L1 and L2. If these are not receiving power, system cannot function.

IF TRANSFORMER HAS HIGH VOLTAGE APPLIED TO IT:

1. Check low-voltage transformer leads R (red) and C (brown). Be sure they are wired to correct locations.

2. Check output voltage of transformer secondary side R (red) and C (brown). If transformer output is between 18 and 30 vac. If transformer output is incorrect and transformer is receiving correct input voltage (208v or 230v), then transformer needs to be replaced with recommended transformer. If no problem exists with transformer secondary, proceed to items 3 and 4.

3. Check low-voltage fuse shown in Fig. 3A. If fuse is blown, replace it with an identical 5-amp fuse. The transformer cannot supply power to board with fuse blown or loose. If fuse blows when unit has power applied to it, the system most likely has 1 of the following problems:
 a. Check all 24-v wiring for an electrical short.
 b. The maximum load on transformer is 40 VA. If load on transformer is excessive, the low-voltage 5-amp fuse will blow to protect transformer. If load exceeds VA rating of transformer, a larger VA rated transformer needs to be installed. Check sequencers/relays for excessive current draw.
 c. Check wiring of heaters. If a heater is miswired, fuse may blow. If a heater is miswired, correct miswiring by comparing it to heater wiring label.

4. Check connections on primary side of transformer. If they are not connected properly, the transformer secondary cannot supply the 24-v signal to energize fan relay. If transformer is receiving correct primary voltage but is not putting out correct secondary voltage, transformer needs to be replaced.

B. If Electric Heat Stages Will Not Turn On But Fan Will Turn On:

IF THERE IS NO HIGH VOLTAGE TO TRANSFORMER:

1. Check plug connection between heaters and board. This supplies power to transformer and fan. Be sure plug is connected properly.

2. Check sequencer/relay number 1 and plug wiring. Yellow wire should be connected to pin number 9 of plug and to limit switch. Black wire should be connected to pin number 7 of plug and to sequencer/relay number 1.

3. Check incoming high-voltage power leads. If these are not receiving power, system cannot function.

IF TRANSFORMER HAS HIGH VOLTAGE APPLIED TO IT:

1. Check low-voltage transformer leads R (red) and C (brown). Make sure they are wired to correct location. The unit will not function without proper connections.

2. Check output voltage of transformer secondary side R (red) and C (brown). If transformer output is low (less than 18 vac), refer to items 3 and 4 of previous “If Transformer Has High Voltage Applied To It” section.

IF TRACES ARE OVERHEATED ON BACK OF PCB:

Usually whenever a trace is blown on PCB, it means either there has been a high-voltage short or high voltage has been applied to low-voltage circuit. This can be prevented by making sure PCB is wired correctly before PCB has power applied to it.

C. If Transformer Fuse Keeps Blowing:

When low-voltage fuse blows, it means transformer would have blown if fuse had not been in circuit to protect it. The fuse usually blows when there is a high current draw on transformer, high...
D. If Fan Runs Continuously:

1. If PCB has no low-voltage power, check blue and black fan leads. These may be switched at sequencer/relay.

2. If PCB has low-voltage power, check fan relay to see if it is opening and closing. It may be stuck in the normally-closed position due to debris in relay.

3. Check VA draw on transformer. If VA draw is more than VA rating of transformer, fuse will blow. If this is the case, replace transformer with one that has a higher VA rating and meets system specifications.

Fig. 4—Wiring Diagram of Sequencer Heater

- Voltage applied to low-voltage circuit, or a direct secondary short. When there is a high current draw on transformer, it is most likely because transformer has been shorted or system is trying to draw more VA than transformer rating allows. When fuse blows because of high voltage, the system has mixed high- and low-voltage signals.

1. Check wiring of sequencers/relays as shown in Fig. 4 and 5. Be sure transformer is not shorting out because thermostat wires are miswired.

2. Check wiring of sequencers/relays as shown in Fig. 4 and 5. Be sure low-voltage and high-voltage wiring is correct.
CAUTION:
NOT SUITABLE FOR USE ON SYSTEMS EXCEEDING 150V TO GROUND
ATTENTION:
NE CONVIENT PAS AUX INSTALLATIONS DE PLUS DE 150 VA LA TERRE

NOTES:
1. Use copper wire (75°C min.) only between disconnect switch and unit.
2. To be wired in accordance with N.E.C. and local codes.
3. If any of the original wire, as supplied, must be replaced, use the same or equivalent type wire.
4. Replace low voltage fuse with no greater than 5 amp fuse.
5. Use 60 amp class K fuses only, for replacement.
6. (3) speed motor shown. Optional (2) speed motor uses HI (BLK) and LOW (BLU or RED).
7. Connect R to R, G to G, etc., see outdoor instruction for details.
8. Smaller heaters will have fewer components.

324984-101 REV. A

→ Fig. 5—Wiring Diagram of Relay Heater

E. Transformer Failure:
1. Check 208-v and 230-v transformer connections. They may be miswired.

CIRCUIT BOARD FUNCTION AND TROUBLESHOOTING
HK61GA001 and HK61GA003 Circuit Boards
This section of the service manual describes the HK61GA001 and HK61GA003 printed-circuit boards (PCB) by examining the functional operation of the printed-circuit board’s components.

I. PCB COMPONENT LAYOUT AND DESCRIPTION
Layout of the actual printed-circuit boards are depicted in Fig. 6 and Fig. 7.
1. The low-voltage terminal board is used to connect the indoor thermostat to the low, 24-v side of the transformer, and to serve as a junction between the indoor thermostat and the outdoor section.

2. Break off the tabs.
 a. W2-3 — Used to control (stage) the second stage of electric heat. The first stage controlling electric heat and the indoor fan are interlocked through diodes.
 b. W2-E — Used to control (stage) the third stage of electric heat.
3. A fuse is used to protect the low-voltage transformer.
4. AUX 1 and AUX 2 are connections for the latent capacity control, delay off kit, 2-speed kit and air conditioning accessories.
5. F1, F2, F3, and F4 are connections for the indoor fan.
6. EAC1 and EAC2 are 240-v connections, which parallel fan lead connections, for the electronic air cleaner.
7. L1 and L2 are 240-v connections which parallel power input.

Fig. 6 and Fig. 7.
Layout of the actual printed-circuit boards are depicted in I. PCB COMPONENT LAYOUT AND DESCRIPTION
8. T1, T2 and T3 are connections for the primary, high-voltage side of the transformer.

9. The fan relay is controlled by the thermostat and turns the fan on and off.

10. A plug is used as the connection for the PCB power and electric heaters. Note the pin numbers on the plug.

11. Diodes provide DC power for the fan relay and the first stage of electric heat: W2, W3 or E.

II. PCB COMPONENT FUNCTIONS

A. Low-Voltage Terminal Board

The low-voltage terminal board connects the indoor thermostat to the outdoor unit as shown in Fig. 8. The terminals are listed as follows along with their functional control.

1. R is used to connect the secondary side of the transformer. The red wire provides low voltage (24v) to the PCB and the thermostat. R is fused on the HK61GA003 board.
2. C is used to connect the brown wire of the thermostat to provide a return path to ground through the fuse which protects the transformer. C is fused on the HK61GA001 board.

3. G is used to control the switching of the relay to turn the fan on through the normally open contact of the relay.

4. Y on the HK61GA001 is used as the junction for the outdoor section’s Y connection which controls the compressor contactor for heat pump and cooling modes. The HK61GA003 board contains a 90-sec fan-off delay which begins timing when the Y is de-energized.

5. O is used as a junction for a heat pump reversing valve circuit.
6. W2 is used to turn on the first stage of electric heat which is interlocked with the fan through the normally closed fan relay. Unless the tabs are broken off, all stages of electric heat will turn on when W2 receives a signal from the thermostat.

7. W3 is used to turn on the second stage of electric heat. Note the W2 and W3 tab must be broken off for individual staging to take place. Energizing W3 will always turn on the first stage through the diodes even if the tabs are broken off.

8. E is used to turn on the third stage of electric heat. Note that the W3 and E tab must be broken for this individual staging. Energizing E will always turn on the first stage through the diodes even if the tab is broken off.

9. L is used as a junction to wire a diagnostic light (LED) on selected thermostats.

B. Transformer

The proper wiring of the transformer on the HK61GA001 board is illustrated in Fig. 8. Note that T1, T2, and T3 are wired to the primary or high side of the transformer. The blue wire is connected to T3 for 208-v applications. The red wire is connected to T3 for 230-v applications. Units are factory wired at 230v. The T2 terminal is a dummy.

C. Indoor Fan

1. Wiring--The fan connects to F1, F2, F3, and F4 as shown in Fig. 8. Note that F2 and F3 are dummy terminals. The desired fan speed is connected to F4 and the common is connected to F1. Units are factory wired at medium speed.

2. Functional Control

 a. Thermostat and Relay Control--When the thermostat calls for the fan in cooling, heat pump, electric heat, or fan-only mode, a 24-v dc signal is sent to the relay. This causes the relay to close its normally open contacts, thus turning on the fan. When the thermostat no longer calls for the fan, the signal sent to the relay is turned off and the relay opens causing the fan to turn off. The HK61GA003 board contains a 90-sec fan-off delay when Y is de-energized.

 b. Sequencer Interlock--The fan will also turn on whenever there is any call for electric heat, even if the fan relay is not energized. This happens because the fan is interlocked with the first stage of electric heat through the normally closed contact of the fan relay.

D. Electric Heat

When the thermostat calls for electric heat, a 24-v signal is sent to the PCB through W2, causing the first stage to turn on. W3 and E also receive the signal if the tabs are not broken off the PCB. The signal sent to W2 causes the first stage to turn on. If the tabs are broken off the PCB, the sequencers can be controlled individually to stage the electric heat. The sequence control is described in the following section:

1. W2--When the thermostat sends a signal to W2, a 24-v dc signal is applied across sequencer number 1, causing it to close. When sequencer number 1 closes, the first stage of electric heat energizes after a short delay. In straight electric heat, the fan is also energized through the normally closed contacts of the fan relay. In cooling, heat pump, or manual fan mode, the fan will already be running since the fan relay would have been energized. When the thermostat stops calling for electric heat, the 24-v dc signal to sequencer number 1 turns off and the sequencer opens after a delay of 60 to 90 sec. When the sequencer opens, the first stage of heat turns off along with the fan, providing that the thermostat is not calling for the fan. Note that the electric heat cannot be turned on without the fan being turned on at the same time. This is a fan interlock system.

2. W3--When a signal is sent to W3, 2 control signals are sent out to the sequencers; a 24-v dc signal to sequencer number 1 through the diode interlock, and a 24-v ac signal to sequencer number 2. The 24-v ac signal applied to sequencer number 2 causes the sequencer to close, with the second stage of electric heat turning on after a short delay. The 24-v dc signal applied to sequencer number 1 causes the first stage of electric heat to turn on in the same manner as described in W2 above. Note that W3 is interlocked with the fan, since sequencer number 1 is turned on whenever W3 has a signal sent to it. Timing is such that sequencer number 1 will turn on before sequencer number 2. When the signal to W3 is turned off, sequencer number 2 opens after a short delay. If W2 is also satisfied, the first stage of electric heat and the fan will also turn off, providing the thermostat is not calling for the fan.

3. W4--The thermostat sends a signal to W4 in the same manner as described in W2 above. Note that W4 is interlocked with the fan, since sequencer number 1 is turned on whenever W4 has a signal sent to it. Timing is such that sequencer number 1 will turn on before sequencer number 2. When the signal to W4 is turned off, the fan relay will turn off. If W4 is also satisfied, the fan will turn off.

4. E--When the thermostat sends a signal to E, 2 signals are sent out to the sequencers. A 24-v ac signal is sent to sequencer number 3 and a 24-v dc signal is sent to sequencer number 1. The 24-v ac signal applied to sequencer number 3 turns on the third stage of electric heat. The 24-v dc signal applied to sequencer 1 turns on the first stage of electric heat and the fan in the same manner as W3. Note that E is also interlocked with the fan.

When the thermostat stops calling for electric heat, the signals to sequencers 1 and 3 are turned off and the sequencers open. This causes the electric heat to turn off with the fan if the thermostat is not calling for the fan.

E. Accessories

1. EAC1 and EAC2 for Electronic Air Cleaners

 a. Thermostat and Relay Control--When the thermostat calls for the fan in cooling, heat pump, electric heat, or fan-only mode, a 24-v dc signal is sent to the relay. This causes the relay to close its normally open contacts, thus turning on the fan. When the thermostat no longer calls for the fan, the signal sent to the relay is turned off and the relay opens causing the fan to turn off. The HK61GA003 board contains a 90-sec fan-off delay when Y is de-energized.

2. AUX1 and AUX2 for 2-Speed Fan Relay Kit

 a. Use to control fan speed operation, high speed for cooling, heat pump, and fan-only modes. Low speed is used for electric heat. Fig. 9 shows proper connection for 24-v dc 2-speed fan relay kit. Note that kit’s relay coil is in parallel with fan relay coil on PCB connected to AUX1 and AUX2. Make sure the normally closed contact is connected to the lower speed.

 b. The latent capacity control kit is used to control fan speed operation when the relative humidity is above a set point on humidistat. Humidistat opens and 2-speed fan relay remains in normally closed position with fan motor running at a lower speed for maximum humidity control. Fig. 10 shows proper connection for latent capacity control kit. Note that it is connected in the same manner as 2-speed fan relay kit but with relay connected to humidistat (orange wires).

 c. Time delay-off relay kit is used to increase the efficiency of the system by delaying the fan from turning off after the thermostat is satisfied on the HK61GA001 board. The HK61GA003 board has this feature as standard. The proper wiring and mounting of the time delay-off relay kit is shown in Fig. 11.

 d. Latent capacity control and time delay-off connections are shown in Fig. 12, for the HK61GA001 board only.

III. TROUBLESHOOTING THE PRINTED-CIRCUIT BOARD

Use Fig. 13 wiring schematic as a guide in troubleshooting the PCB unless otherwise noted.
Fig. 8—10kw to 20kw Circuits
Fig. 9—Two-Speed Fan Relay Kit
Fig. 10—Latent Capacity Control Kit

- Transformer
- ACLine
- T1
- T2
- L1
- F1
- F2
- F3
- F4
- 2SD-1
- E
- C
- G
- B
- W2
- W3
- AUX 1
- AUX 2
- RED
- BLK
- YEL

- Fan Motor Common Lead
- Fan Common Lead
- AUX 1
- AUX 2
- NC to Lower Fan Speed
- NO to Higher Fan Speed
- Orange Wires to Humidistat
- RED
- BLK
- YEL

- Marked Terminal
- Unmarked Terminal
- Field Control Wiring
- Field Power Wiring
- Factory Power Wiring
- Factory Relay Board
- Circuit Board
- HST
- ORG
- COM
- NC
- NO

- Low MTR SPD
- HI MTR SPD
- Fan Common Lead
- Unused Lead
- 208/240 VAC
- 24 VDC

- Red
- Orange
- Black
Fig. 12—Latent Capacity Control and Time Delay-Off Relay Kits
Fig. 13—Wiring Schematic
A. If the fan will not turn on from the thermostat:

1. Check the plug/receptacle connection; this brings power to the PCB. Make sure the plug is connected properly.
2. Check sequencer number 1 and the plug’s wiring; the yellow wire should be connected to pin number 9 of the plug and the limit switch. A black wire should be connected to pin number 7 of the plug and to sequencer number 1.
3. Check power leads L1 and L2. If these are not receiving power, the system cannot function.

IF THE PCB HAS HIGH VOLTAGE APPLIED TO IT:

1. Check the transformer and thermostat wiring as shown in Fig. 11. Make sure the low-voltage and the high-voltage wiring are connected to the proper sequencers.
2. Check the wiring of the sequencers as shown in Fig. 13. Make sure the fan leads are connected to the proper terminals.
3. Check the fan relay to see if it is opening and closing. It may be stuck in the normally closed position due to debris in the relay.

B. If the electric heat stages will not turn on but the fan will turn on:

1. Check the transformer and thermostat wiring as shown in Fig. 11. Make sure the transformer is not shorting out by the ground strap being miswired.
2. Check sequencer number 1 and the plug wiring. The yellow wire should be connected to pin number 9 of the plug and the limit switch. The black wire should be connected to pin number 7 of the plug and to sequencer number 1.
3. Check incoming high-voltage power leads. If these are not receiving power, the system cannot function.

IF THE PCB HAS HIGH-VOLTAGE APPLIED TO IT:

1. Check the low-voltage transformer leads, R and C. Make sure they are wired to the correct locations. Note that Fig. 13 shows wiring of the HK61GA001 board.
2. Check the output voltage of the secondary side, R and C, of the transformer. If the circuit board is a HK61GA003, make sure the ground strap is in place from C to the bracket. This strap must be in place to complete the 24-v circuit. Make sure the transformer output is around 24-v ac. If the transformer output is zero-v ac, then the transformer needs to be replaced with the recommended transformer. If the transformer output is 24-v ac, then proceed to 3 and 4.
3. Check the low-voltage fuse shown in Fig. 6 and Fig. 7. If the fuse is blown, replace it. The transformer cannot supply power to the board with the fuse blown or loose. If the fuse blows when the unit has power applied to it, the system most likely has one of the following problems:
 a. If the transformer is shorting out, check the wiring of the transformer.
 b. The maximum load on the transformer is 40 VA. If the load on the transformer is excessive, the low-voltage, 5-amp fuse will blow to protect the transformer. If the load exceeds the VA rating of the transformer, a larger VA rated transformer needs to be installed. Check the sequencers for excessive current draw.
 c. Check the wiring of the heaters. If the heater is miswired, the fuse may blow. Check the diodes shown in Fig. 14 for signs of overheating. If the heater is miswired, correct the miswiring.
4. Check the T1, T2, and T3 connections on the primary side of the transformer. If they are not connected properly, the low-voltage terminal board cannot supply the 24-v signal to energize the fan relay. If the transformer is receiving the correct primary voltage but is not outputting the correct secondary voltage, the transformer needs to be replaced.

B. If the electric heat stages will not turn on but the fan will turn on:

1. Check the wiring of the sequencer. Pay particular attention to the high and low-voltage wiring of the sequencers.
2. Check the plug wiring to make sure that it is wired correctly.
3. Check the voltage to the sequencer; sequencer number 1 receives a 24-vac signal. If it is receiving the correct voltage, check to see if the sequencer is closing. If the sequencer is not closing but is receiving the correct voltage, replace the sequencer. If the sequencer is closing, check the high-voltage wiring as discussed in 1 and 2.

C. If the electric heat and the fan will not turn on:

IF THERE IS NO HIGH VOLTAGE TO THE PCB:

1. Check the plug connection. This brings power to the PCB transformer and the fan. Make sure the plug is connected properly.
2. Check sequencer number 1 and the plug wiring. The yellow wire should be connected to pin number 9 of the plug and the limit switch. The black wire should be connected to pin number 7 of the plug and to sequencer number 1.
3. Check incoming high-voltage power leads. If these are not receiving power, the system cannot function.

IF THE PCB HAS HIGH-VOLTAGE APPLIED TO IT:

1. Check the low-voltage transformer leads, R and C. Make sure they are wired to the correct location. The unit will not function without proper connections.
2. Check the output voltage of the secondary side, R and C, of the transformer. If the circuit board is an HK61GA003, make sure the ground strap is in place from C to the bracket. This strap must be in place to complete the 24-v circuit. If the transformer output is zero-v ac, refer to “If the PCB has high voltage applied to it” in column 1, numbers 3 and 4.

D. If the traces are burnt out the back of the PCB:

Usually whenever there is a trace blown on the PCB it means either there has been a high-voltage short or high voltage has been applied to the low-voltage circuit. This can be prevented by making sure the PCB is wired correctly before the PCB has power applied to it.

E. If there are blown diodes:

1. If diodes a and b are blown, it is probable the electric heater plug was miswired. Correct the miswiring. It should be noted the board will need to be replaced if the diode indicated is bad.
2. If any of the c diodes are blown, the fan is miswired to 1 of the low-voltage terminals, AUX1 or AUX2. Check to make sure that the fan leads are connected to the proper terminals as shown in Fig. 13. If the fan is connected properly, make sure that no other high voltage is applied to the AUX terminals.

F. The PCB fuse keeps blowing:

When the low-voltage fuse blows, it means the transformer would have just blown if the fuse had not been in the circuit to protect it. The fuse usually blows when there is a high current draw on the transformer, high voltage applied to the low-voltage circuit, or a direct secondary short. When there is a high current draw on the transformer, it is most likely because the transformer has been shorted or the system is trying to draw more VA than the transformer is rated for. When the fuse blows because of high voltage, the system has mixed high- and low-voltage signals.

1. Check the transformer and thermostat wiring as shown in Fig. 11. Make sure the transformer is not shorting out by the thermostat wires being miswired.
2. Check the wiring of the sequencers as shown in Fig. 13. Make sure the low-voltage and the high-voltage wiring are connected to the proper sequencers.
3. Check the VA draw on the transformer. If the VA draw is more than the VA rating of the transformer, the fuse will blow. If this is the case, replace the transformer with 1 that has a higher VA rating and meets system specifications.

G. The fan runs continuously:

1. If the PCB has no low-voltage power, check the blue and black fan leads. These may be switched at the sequencer.
2. If the PCB has low-voltage power, check the fan relay to see if it is opening and closing. It may be stuck in the normally closed position due to debris in the relay.

H. Transformer failure:

1. Check the 208-v and 240-v taps connected to T1, and T3. They may be miswired.
ELECTRIC HEATER FUNCTION AND TROUBLESHOOTING

This section describes KFA, KFB, KFC, and KFD series electric heaters in exclusion of Smart Heat by examining the functional operation of these heaters.

I. DESCRIPTION OF ELECTRIC HEATER COMPONENTS

A. Limit Switch

The limit switch is a temperature-sensitive control whose function is to prevent system from overheating in abnormal conditions. The temperature settings often vary from heater to heater due to variations in airflow patterns and element radiant heat conditions. The devices are sized to remain on-line under heat pump conditions (115°F air off coil) and minimum CFM, but trip to prevent outlet air conditions above 200°F or excessive component or duct temperatures.

The device itself consists of a bimetallic disc, which when overheated "snaps through" to open a normally-closed high-voltage, high-current switch. When system temperatures cool sufficiently, the switch will automatically reset to its closed position. Normal failure mode for this switch is open.

If a limit switch has been determined to be defective, NEVER BYPASS THE LIMIT SWITCH. When replacing limit switch, ensure that it is replaced with a limit switch of identical opening temperature and closing differential. Limits switches are typically color coded to identify their range.

B. KFA and KFB Sequencer

The sequencer is essentially a thermally activated time-delay relay normally activated by low-voltage control signals from thermostat. The typical sequencer is a 1- or 2-pole normally-open device which energizes within 10 to 30 sec after application of control signal and de-energizes 60 to 90 sec after control signal is removed.
In simplistic terms, the sequencers which we use are nothing more than normally-open limit switches which sit on top of a small resistive heater. When voltage is applied to this heater, a positive temperature coefficient resistor (PTC), heat is supplied to a bimetallic disc which "snaps through" and closes switch. The time required for PTC to heat to a sufficient point controls ON timing of device. The time required for disc to cool down when power is removed controls OFF time of device. The PTC can be varied to provide varied timing. Typically a short ON equates to a long OFF. Because this is a thermally-activated device, ambient conditions affect the ON/OFF cycle. Higher ambient temperature means shorter ON times and longer OFF times. These sequencers may be "ganged up" to 3 on a common mounting plate to control up to 6 heater elements. In this situation, PTCs are different in each sequencer to provide a staged ON of a minimum plate to control up to 6 heater elements. In this situation, PTCs are different in each sequencer to provide a staged ON of a minimum 10 sec between each sequencer — 3 stages of 2 elements since the KFA and KFB series heaters use sequencers in which both switches of the 2-pole sequencer close simultaneously. Older models used sequencers which had a minimum delay of 10 sec between each switch.

Application of these devices is such that the first switch ON not only turns on first heater element, but also ensures that indoor fan is energized, because first ON is last OFF. This ensures fan remains ON until the last heater de-energizes.

C. KFC and KFD Electric Heat Relay
KFC and KFD electric heater packages have relays controlling the heater elements instead of sequencers. A small rectifier PCB is mounted to each relay which converts the incoming 24-vac control signal to dc. In addition to the rectifier circuit, the second and third stage relays contain a time-on delay circuit of 5 seconds for second stage, and 8 seconds for third stage. When the control signal is removed from the relays, all relays will open with no time-off delay.

II. TROUBLESHOOTING KFA, KFB, KFC, AND KFD SERIES ELECTRIC HEATERS
A. Discolored Wire Insulation at Terminal
Check quick-connect terminal at discoloration. Connection may be loose, creating a high resistance through connection point.

B. Fuse Failure
2. Check shorted element. If element is shorted, replace heater.

C. No Heat
1. Check fuse for failure. If fuse has failed, refer to Fuse Failure section.
2. Check for faulty transformer. Check output voltage of transformer secondary side R (red) and C (brown). Make sure output is between 18 and 30 vac. If output voltage is low and input voltage tests normal, replace transformer.
3. Check for miswired heater plug harness.
4. Check limit switch or sequencer failure. These switches should have failed in open position. If output voltage is zero volts, replace switch.
5. Check heater relay and PCB (KFC and KFD heaters only). Control voltage input to PCB should be 24-vac. Output to relay should be 18-vdc minimum. If input is present but no output, replace PCB. If output is present, replace relay.

D. Heater Will Not Turn Off
1. Check low-voltage wiring for miswire.
2. Check for shorted elements to ground.
3. Replace sequencer/relays. They may be stuck closed.

E. Nuisance Trips
1. Check for low airflow due to dirty filters, blocked registers, or undersized duct.
2. Check blower motor and wheel for proper operation. Excessive current draw of motor will cause internal overload to trip.
3. The fan speed may be low.

FAN COIL DESCRIPTION AND TROUBLESHOOTING
FK4B
The FK4B is similar to the discontinued FK4A as they both have integrated controls and motor (ICM) and their own special circuit board. The greatest difference between the 2 models is the way each goes about delivering air.

Setting up desired airflow on the FK4B is obtained by the selections made on Easy Select™ circuit board. The motor delivers requested airflow as defined by signals received from Easy Select Board and its internal programming. The major difference is that the FK4B motor reacts to changes in system static pressures to maintain constant airflow.

Unlike conventional fan coils where static pressure affects airflow, the FK4B is a constant airflow unit. The blower delivers requested airflow up to about 0.7 in. of static pressure. The ICM2 is pre-programmed and contains airflows for all modes of operation. Blower characteristics (airflow, torque, and speed-vs-static pressure) are known from laboratory testing. If any 3 characteristics are known, the fourth is defined.

Requested airflow is known because of Easy Select board configuration and thermostat signals. Torque is known because it is directly related to armature current which is measured by motor control. Speed is measured from its generated back EMF. This information is entered into an expression which calculates torque from speed and airflow numbers. If calculation does not match stored blower characteristics, torque is adjusted every 0.8 sec until agreement is reached. The unit does not directly measure static pressure, but does react to a change in static to maintain constant airflow.

The ICM2 is similar to the ICM1 used in FK4A series units, but cannot be used as a replacement without some modification to FK4A unit. Consult SMB 93-0052 for motor conversion kit. The electronics of motor are built into rear of motor, deriving the name ICM. (See Fig. 15.)

An ICM is first fed high voltage AC power through the 5-pin connector. The AC power is then rectified to DC by a diode module. After rectification, DC signal is electronically communicated and fed in sequential order to 3 stator windings. The frequency of communication pulses determines motor speed. The rotor is permanently magnetized.

An ICM is powered with high voltage at all times. The motor will not run with high voltage alone. Low voltage must be applied to control plug to run motor.

II. PCB LAYOUT AND DESCRIPTION
NOTE: Layout of actual PCB is depicted in Fig. 16 and 17. The control is a single PCB which interfaces a variable-speed ICM2 with other system components.

Power for system is supplied from a 230-vac, 60-Hz line. Class 2 voltage (24 vac nom.), used for thermostat connections, is derived from a transformer located in close proximity to control. The primary and secondary of transformer are connected to control board. The 24-vac secondary circuit includes a socket, soldered into circuit at SEC2, to receive a 5-amp automotive-type fuse. Connection to heater panel is made through 12-circuit connector P1. Connections to thermostat are made at screw terminals. Line voltage for ICM2 is made through 7-circuit connector P2. Eighteen quick-connect terminals comprise field select taps for motor.
Fuse Data: 5-amp automotive-type ATC/ATO (tan)
32v
200 percent current opening time of 5 sec maximum

A. Electrical Connections
Eighteen 0.187-in quick-connect terminals are used to provide programming selections for operating modes of ICM2. The 5 selection modes are listed below. For additional information, refer to Easy Select Configuration Taps section.
- AUX Heat Range—(Violet Wire)
- AC/HP Size—(Blue Wire)
- Type—(Orange Wire)
- AC/HP CFM Adjust—(Black Wire)
- AC/HP Time Delay—(Grey Wire)

III. SEQUENCE OF OPERATION
A. Continuous Fan Mode
The thermostat closes circuit R to G. The G signal is sent directly to ICM2.

B. Cooling Mode—Single Speed or 2-Speed High
Thermostat closes circuits R to Y/Y2 and R to O (heat pump only) for single speed. A circuit from R to Y1 is also required for 2-speed high. The Y/Y2 signal is sent directly to ICM2.

C. Cooling Mode—Two-Speed Low
Thermostat closes circuits R to Y1 and R to O (heat pump only). The Y1 signal is sent directly to ICM2.

D. Electric Heat Heating Mode
Thermostat closes circuit R to W2, W3, or E.
The terminal block positions W2, W3, and E are tied together by jumpers JW1 and JW2. These jumpers are provided for field staging of electric heater banks through use of thermostats. When staging is a requirement, installer cuts jumpers and wires in thermostats as is the common practice with other fan coils. To ensure motor operation if any 1 of the inputs is energized, the 3 electric heater inputs are also interlocked through diodes D1, D2, and D3 to motor W input.

E. Heat Pump Heating Mode—Single Speed or 2-Speed High
Thermostat closes circuit R to Y/Y2 for single speed. A circuit from R to Y1 is also required for 2-speed high. The Y/Y2 signal is sent directly to ICM2.

F. Heat Pump Heating Mode—Two-Speed Low
Thermostat closes R to Y1. The Y1 signal is sent directly to ICM2.

G. Heat Pump Heating With Auxiliary Electric Heat
Thermostat closes circuits R to Y/Y2 and/or R to Y1 with R to W2, W3, or E (and R to O in the case of defrost).
See previously described modes for circuit paths.
In the event that electric heating is called for by thermostat while heat pump is also operating in either heating or defrost mode,
electric heating signal will appear at motor connector pin 1 as described previously. If necessary, the motor will modify its airflow output to provide an airflow which is defined as safe for operation of electric heater.

H. CFM Select Configuration Taps
The CFM Select taps are used by installer to configure system. The ICM2 is capable of discerning wave shapes on some of its inputs and uses this capability to modify its operation to a pre-programmed table of airflows and can be modified in response to other inputs such as the need for de-humidification.

I. ICM2 Control Power
The ICM2 control power is supplied from R circuit through printed-circuit runs to motor control connector pin 6, through motor control harness to motor. The C side of low-voltage control power circuit is connected by printed-circuit runs to motor connector pins 4 and 5, then through motor control harness to motor.

J. Low-Voltage Circuit Fusing and Reference
The low-voltage circuit is fused by a board-mounted 5-amp automotive-type fuse placed in series with transformer SEC2 and R circuit. The C circuit of transformer is referenced to chassis ground through a printed-circuit run at SEC1 connected to metal standoff marked GROUND SCREW REQUIRED.

NOTE: A ground screw must be in place or erratic motor operation can result.

K. Transformer, Motor, and Electric Heater Power Connections
The high-voltage (230-vac) power input to board is provided through electric heater connector pins 7 and 9. The high voltage is then connected through printed-circuit runs to motor power connections M1 and M2 and transformer power connections T1 and T3. Transformer connection T2 is a dummy terminal used for unused primary power lead. The transformer secondary connections are made at SEC1 and SEC2 connectors.

IV. EASY SELECT CONFIGURATION TAPS
The Easy Select taps are used by installer to configure system. The ICM2 uses selected taps to modify its operation to a pre-programmed table of airflows. Airflows are based on system size or mode of operation and those airflows are modified in response to other inputs such as the need for de-humidification. (See Fig. 16.)

The FK4B Fan Coil must be configured to operate properly with system components with which it is installed. To successfully configure a basic system (see information printed on circuit board located next to select pins), move the 5 select wires to pins which match components used.

A. Auxiliary Heat Range
The installer must select the auxiliary heat airflow approved for application with kw size heater installed. If no heater is installed, skip this step. Each select pin is marked with a range of heaters for which airflow (also marked) is approved. For increased comfort select the narrowest kw range matching the heater size, for example, 0-10 for a 10-kw heater. This airflow must be greater than the minimum CFM for electric heater application with the size system installed for safe and continuous operation. Note that airflow marked is the airflow which will be supplied in emergency heat mode and heating mode on air conditioners when electric heat is primary heating source. To ensure safe heater operation in heat pump heating mode when electric heaters are energized, the ICM2
will run the higher of heat pump efficiency airflow and electric heater airflow. The factory selection is largest heater range approved. (See Fig. 16.)

B. AC/HP Size
The factory setting for air conditioner or heat pump size is largest unit meant for application with model of fan coil purchased. The installer needs to select air conditioner or heat pump size to ensure that airflow delivered falls within proper range for size of unit installed in all operational modes. (See Fig. 16.)

C. System Type
The type of system must be selected.
 1. AC—air conditioner
 2. HP-COMFORT—provides same airflow as air conditioner selection (approximately 375 CFM/ton)
 3. HP-EFF—provides most efficient airflow for heating and cooling modes (approximately 410 CFM/ton heating and 375 CFM/ton cooling)

The factory setting is AC. (See Fig. 16.)

D. AC/HP CFM Adjust
Select low, medium, or high airflow. To provide any of these airflows, AC/HP ADJUST select must be moved to MED position. The factory selection is LO. The adjust selections HI/LO will regulate airflow supplied for all operational modes, except non-heat pump heating modes, +10 percent and -10 percent respectively. The adjust selection options are provided to adjust airflow supplied to meet individual installation needs for such things as noise, comfort, and humidity removal. (See Fig. 16.)

E. AC/HP Time Delay
Select desired time delay profile. Four motor operation delay profiles are provided to customize and enhance system operation. (See Fig. 16.) The selection options are:
 1. The standard 90 sec off delay (factory setting).
 2. No delay option used for servicing unit or when a thermostat is utilized to perform delay functions.

---23---
3. A 30 sec on/90 sec off delay profile used when it is desirable to allow system coils time to heat up/cool down prior to airflow. This profile will minimize cold blow in heat pump operation and could enhance system efficiency.

4. ENH, enhanced selection provides a 30 sec on/180 sec off delay at half airflow, adding comfort and efficiency.

V. TROUBLESHOOTING PCB

Use Fig. 17 and 18 and Tables 3, 4, and 5 as guides in troubleshooting PCB unless otherwise noted.

TABLE 3—MALE/ FEMALE QUICK-CONNECT TERMINALS (FK4B)

<table>
<thead>
<tr>
<th>SIZE FEMALE</th>
<th>SIZE MALE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250 X 0.032</td>
<td>M2</td>
<td>Motor line voltage connection (230 vac 60 Hz)</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>Transformer line voltage connection (230 vac 60 Hz)</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Transformer tap storage terminal for 208-vac lead</td>
</tr>
<tr>
<td></td>
<td>SEC1</td>
<td>Secondary connection from transformer (24 vac)</td>
</tr>
<tr>
<td></td>
<td>SEC2</td>
<td>Secondary connection from transformer (24 vac)</td>
</tr>
<tr>
<td></td>
<td>HUM1</td>
<td>Low voltage ground for humidifier option (24 vdc)</td>
</tr>
<tr>
<td></td>
<td>HUM2</td>
<td>Low voltage output for humidifier option (24 vdc)</td>
</tr>
<tr>
<td></td>
<td>AUX1</td>
<td>Low voltage ground for auxiliary option (24 vdc)</td>
</tr>
<tr>
<td></td>
<td>AUX2</td>
<td>Low voltage output for auxiliary option (24 vdc)</td>
</tr>
<tr>
<td>0.187 X 0.032</td>
<td>M1</td>
<td>Common connection to blower motor</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>Common connection for transformer</td>
</tr>
<tr>
<td></td>
<td>RED</td>
<td>Common to R screw terminal and SEC2</td>
</tr>
</tbody>
</table>

TABLE 4—CONNECTIONS ON SINGLE BARRIER STRIP MOUNTED, CROSS SLOTTED, CAPTIVE BINDING HEAD (FK4B)

<table>
<thead>
<tr>
<th>SCREW TERMINAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2</td>
<td>Connection for W2 signal from thermostat</td>
</tr>
<tr>
<td>W3</td>
<td>Connection for W3 signal from outdoor thermostat</td>
</tr>
<tr>
<td>E</td>
<td>Connection for E signal from thermostat</td>
</tr>
<tr>
<td>Y/Y2</td>
<td>Connection for Y signal from thermostat</td>
</tr>
<tr>
<td>G</td>
<td>Connection for G signal from thermostat</td>
</tr>
<tr>
<td>O</td>
<td>Connection for O signal from thermostat</td>
</tr>
<tr>
<td>L</td>
<td>This connection is a field termination for use in connecting L lines of thermostat and outdoor unit together. There is no connection of this terminal with control circuity.</td>
</tr>
<tr>
<td>Y1</td>
<td>Connection for low-speed compressor operation</td>
</tr>
<tr>
<td>R</td>
<td>Connection for R signal to thermostat (24 vac)</td>
</tr>
<tr>
<td>C</td>
<td>Connection for C terminal to thermostat (24 vac common)</td>
</tr>
</tbody>
</table>

TABLE 5—CONNECTIONS AND CONNECTOR (FK4B)

<table>
<thead>
<tr>
<th>TYPE CONNECTION</th>
<th>TYPE CONNECTOR</th>
<th>PIN NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Connection</td>
<td>12-Pin</td>
<td>Pin 1</td>
<td>Common to E screw terminal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 2</td>
<td>Common to W2 screw terminal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 3</td>
<td>Common to C screw terminal, SEC1 terminal, and chassis ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 4</td>
<td>Common to C screw terminal, SEC1 terminal, and chassis ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 5</td>
<td>No connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 6</td>
<td>Common to W3 screw terminal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 7</td>
<td>Common to M2 and T3 quick-connects, 230 vac input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 8</td>
<td>No connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 9</td>
<td>Common to M1 and T1 quick-connects, 230 vac input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 10</td>
<td>No connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 11</td>
<td>No connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 12</td>
<td>No connection</td>
</tr>
<tr>
<td>ICM2 Motor</td>
<td>7-Pin Header</td>
<td>Pin 1</td>
<td>Diode OR output of E or W3 or W2 thermostat signals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 2</td>
<td>Thermostat G signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 3</td>
<td>Common to C, SEC1, and chassis ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 4</td>
<td>Common to C, SEC1, and chassis ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 5</td>
<td>Common to R and SEC2 (via 5-amp fuse)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 6</td>
<td>Thermostat Y/Y2 signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 7</td>
<td>Thermostat Y1 signal</td>
</tr>
</tbody>
</table>

A. If Fan Will Not Turn On From Thermostat:

IF THERE IS NO HIGH VOLTAGE TO PCB:

1. Check connection of 12-pin plug from heaters to receptacle on Easy Select board. This supplies power to PCB. Be sure plug is connected properly.

2. Check sequencer number 1 and plug wiring. Yellow wire should be connected to pin number 9 of plug and to limit switch. Black wire should be connected to pin number 7 of plug and to sequencer number 1.
NOTES:
1. Use copper wire only between disconnect switch and unit.
2. Connect (Y) to (Y), (C) to (C), etc. in pattern shown.
3. To be wired in accordance with NEC and local codes.
4. If any of the original wire, as supplied, must be replaced, use the same or equivalent type wire.
5. Transformer primary leads: BLUE 208V, RED 230V.
6. Fused is wired in series between transformer SEC2 and low voltage “R” circuit.
7. To be wired in accordance with NEC and local codes.
8. If any of the original wire, as supplied, must be replaced, use the same or equivalent type wire.
9. Transformer primary leads: BLUE 208V, RED 230V.
10. Largest heaters are shown, smaller heaters will have fewer elements and components.
11. 1 phase heaters are shown wired for single supply circuit. Multiple supply circuits may be wired directly to fuse/C.B.S.
3. Check power leads L1 and L2. If these are not receiving power, system cannot function.

IF PCB HAS HIGH VOLTAGE APPLIED TO IT:

1. Check low-voltage transformer leads (red and brown). Be sure they are wired to correct locations. (See Fig. 16 and 18.)
2. Check output voltage of transformer secondary side SEC2 and SEC1. Be sure transformer output is around 24 vac. If transformer output is zero vac and transformer is receiving correct input voltage (208v or 240v), then transformer needs to be replaced with recommended transformer. If transformer output is 24 vac, proceed to items 3 and 4.
3. Check low-voltage fuse shown in Fig. 16. If fuse is blown, replace it. The transformer cannot supply power to board with fuse blown or loose. If fuse blows when unit has power applied to it, the system most likely has 1 of the following problems:
 a. Check control circuit for a short or miswiring problem.
 b. The maximum load on transformer is 40 VA. If load on transformer is excessive, the low-voltage 5-amp fuse will blow to protect transformer. If load exceeds VA rating of transformer, a larger VA rated transformer needs to be installed. Check sequencers for excessive current draw.
 c. Check wiring of heaters. If a heater is miswired, fuse may blow. If a heater is miswired, correct miswiring.
4. Check T1, T2, and T3 connections on primary side of transformer. If they are not connected properly, low-voltage terminal board cannot supply 24-v signal to energize fan motor. If transformer is receiving correct primary voltage but is not putting out correct secondary voltage, transformer needs to be replaced.

B. IF ELECTRIC HEAT STAGES WILL NOT TURN ON BUT FAN WILL TURN ON:

1. Check wiring of sequencers. Pay particular attention to high- and low-voltage wiring of sequencers.
2. Check plug wiring to make sure that it is wired correctly.
3. Check voltage to sequencer. Sequencer number 1 receives a 24-v signal. If it is receiving correct voltage, check to see if sequencer is closing. If sequencer is not closing but is receiving correct voltage, replace sequencer. If sequencer is closing, check high-voltage wiring as discussed in items 1 and 2.

IF THERE ARE BLOWN DIODES:

If diodes are blown, it is probable that electric heater plug is miswired. Correct miswiring.

NOTE: Board will need to be replaced if diode is bad.

IF TRACES ARE OVERHEATED ON BACK OF PCB:

Usually whenever there is a trace blown on PCB, it means either there has been a high-voltage short or high voltage has been applied to low-voltage circuit. This can be prevented by making sure PCB is wired correctly before PCB has power applied to it.

C. IF PCB FUSE KEEPS BLOWING:

When low-voltage fuse blows, it means transformer would have blown if fuse had not been in circuit to protect it. The fuse usually blows when there is a high current drawn on transformer, high voltage applied to low-voltage circuit, or a direct secondary short. When there is a high current drawn on transformer, it is most likely because transformer has been shorted or system is trying to draw more VA than transformer rating allows. When fuse blows because of high voltage, the system has mixed high- and low-voltage signals.

1. Check transformer and thermostat wiring. (See Fig. 16 and 18.) Be sure transformer is not shorting out because thermostat wires are miswired.
2. Check wiring of sequencers. (See Fig. 16 and 18.) Be sure low-voltage and high-voltage wiring are connected to proper sequencers.
3. Check VA draw on transformer. If VA draw is more than VA rating of transformer, fuse will blow. If this is the case, replace transformer with one that has a higher VA rating and meets system specifications.

VI. TROUBLESHOOTING ICM2 FAN MOTOR

A. IF MOTOR DOES NOT RUN:

1. With power turned off, check all plugs and receptacles on circuit board and at motor for any deformation that may cause a bad connection. Be sure all plugs are placed fully seated.
2. Verify that there are approximately 230v at terminals M1 and M2. If not, determine if high voltage is entering board. It enters through black and yellow wires at pins 7 and 9 in 12-pin plug.
3. Verify that there is a low-voltage control signal to motor. The motor receives its control signals through the 7-pin motor plug P2. The voltage output of each pin in plug will be different for each mode of operation. Table 6 lists circuit board screw terminals that have 24 vac present (powered by thermostat) and lists voltage that is present at each pin of 7-pin plug for each operating mode. Tests should be taken between points listed and common (C screw terminal). If all values of any 1 of operating modes checks OK and motor fails to run, then motor is defective and should be replaced.

B. IF MOTOR DOES NOT RUN SMOOTHLY:

First verify that the cause is not an out-of-balance or damaged blower wheel. If it is not blower wheel, motor is defective and should be replaced.

C. IF MOTOR SHAFT DOES NOT ROTATE SMOOTHLY:

When manually turning shaft of ICM, the shaft does not rotate smoothly. The shaft has steps during rotation referred to as motor cogging. The cogging is caused by permanent magnets passing each pole of motor. However, shaft should not require excessive force to turn. If shaft is VERY difficult to turn, motor control or bearings have failed and motor must be replaced.

D. IF MOTOR DOES NOT STOP RUNNING

1. Check for good ground between motor ground lead and transformer common lead.
2. If motor continues to run, remove all thermostat wires. If motor stops, replace circuit board.
3. If motor continues to run, remove the 7-pin plug. If motor continues to run, replace motor.

VII. CONDENSED VERSION OF TROUBLESHOOTING FK4B MOTOR AND CONTROLS

This section provides a quick summary of how to troubleshoot the FK4B. If more information is needed, refer to appropriate sections of this service manual.

+ **MOTOR**
 - If motor is hard to turn manually, replace motor.
 - If motor does not run, check the components listed below according to their instructions.
 - If motor runs in some operation modes and not in others, check for a good ground connection between motor ground lead and circuit board screw marked “ground screw” and check the room thermostat and wiring harness according to instructions listed below.
If motor does not stop running, remove the 7-pin plug from circuit board. If motor continues to run, replace motor. If motor stops running, it is either the circuit board or thermostat causing the problem. Test whether thermostat is at fault by disconnecting it from the board.

CIRCUIT BOARD
- Check 5-amp fuse.
- Check for 230v between terminals M1 and M2. If no voltage is present, check power to board. 230-v power enters the board through the black and yellow lead in the 12-pin plug.
- Check for 24v between SEC1 and SEC2. If no voltage is present, check the transformer.
- Check for burn traces or burnt components. If burn spots are present, replace board.

ROOM THERMOSTAT
- Remove thermostat wires from the circuit board.
- Jumper screw terminals (1 at a time) R-G, R-Y/Y2, R-Y1, and R-W2. If motor runs in all cases, thermostat is bad. Replace thermostat. If motor does not run, or runs in some cases but not in others, continue by checking the wiring harness.

WIRING HARNESS
- Shut off power to unit.
- Remove 5-pin plug from motor.

CAUTION: Never remove 5-pin high voltage plug from the motor with the power on.

- Remove 16-pin plug from motor.
- Replace 5-pin plug and turn on power.
- Check for 24v between pin-1 and pin-12 on the 16-pin plug. (See Fig. 19.) If no voltage is present, replace wiring harness. If voltage is present, jumper screw terminal R-Y/Y2 on circuit board and check for 24v between pin-12 and pin-14 on 16-pin plug. (See Fig. 19.) If voltage is present, replace harness.
- If 24v is present, the motor is bad. Replace motor.

VIII. ACCESSORIES

A. Electronic Air Cleaner (EAC)
Familiar 230-vac EAC control/power signal EAC1 and EAC2 is not available, because the ICM2 blower motor used in the FK4B Fan Coil is controlled by low-voltage signals. This signal is replaced by a 24-vdc signal which is provided at circuit board terminals AUX1 and AUX2. (See Fig. 16.) This signal is present when either G or W is present and is active in all heating and cooling modes. Because 24-vdc relays may not be readily available to installer, a kit exists, KFAIR0101ACR, containing a 24-vdc relay which mounts directly inside EAC cabinet. User-supplied 110 vac is switched by relay to power air cleaner when G or W are present. (See Fig. 20 and 21.)

B. FK4B De-Humidify Mode

NOTE: Humidistat must open on humidity rise.
This information is entered into an expression which calculates the speed, which is measured by counting back EMF pulses from stator windings. Speed and thermostat signals. Torque is known because it is directly related to stator current which is measured by motor control. Speed is measured by counting back EMF pulses from stator windings. This information is entered into an expression which calculates torque from speed and airflow numbers. If calculation does not match stored blower characteristics, torque is adjusted until agreement is reached. This calculation and adjustment is performed every 0.8 sec while motor is in operation. There is no direct measure of static pressure, but unit does react to a change in static pressure to maintain constant airflow. A change in pressure will result in a change in stator speed and torque. The motor will begin to adjust on the next sampling, calculate new desired speed and torque, and adjust as necessary.

IX. INTEGRATED CONTROLS AND MOTOR (ICM2)

An ICM2 is fed high voltage AC power through the 5-pin connector. (See Fig. 23.) The AC power is then rectified to DC by a diode module. After rectification, DC signal is electronically communicated and fed in sequential order to 3 stator windings. The frequency of these commutation pulses determines motor speed. The rotor is permanently magnetized.

An ICM2 is powered with high voltage at all times. The motor will run with high voltage alone. Low voltage must be applied to control plug to run motor.

X. PCB LAYOUT AND DESCRIPTION

NOTE: Layout of actual PCB is depicted in Fig. 24 and 25. The PCB interfaces a variable-speed ICM2 with other system components.

Power for system is supplied from a 230-vac, 60-Hz line. Class 2 voltage (24 vac nom.), used for thermostat connections, is derived from transformer located in close proximity to PCB. The primary and secondary of transformer are connected to PCB. The 24-vac secondary circuit includes 5-amp automotive-type fuse in SEC2 circuit.

Connection to heater panel is made through 12-circuit connector P1. Connections to thermostat are made at screw terminals. Twenty-one pin terminals comprise field select taps for motor.

- **Fuse Data:** 5-amp automotive-type ATC/ATO (tan) 32v
- 200 percent current opening time of 5 sec maximum

A. Electrical Connections

Twenty-one 0.110-in pin terminals are used to provide programming selections for operating modes of ICM2. The 6 selection modes are listed below. For additional information, refer to Easy Select Configuration Taps section.

- **AUX Heat Range**—(Violet Wire)
- **AC/HP Size**—(Blue Wire)
- **Type**—(Orange Wire)
- **AC/HP CFM Adjust**—(Black Wire)
- **AC/HP Time Delay**—(Grey Wire)
- **Continuous Fan**—(Yellow Wire)

XI. SEQUENCE OF OPERATION

A. Continuous Fan Mode

The thermostat closes circuit R to G. The G signal is sent directly to ICM2.

B. Cooling Mode—Single Speed or 2-Speed High

Thermostat closes circuits R to Y/Y2 and R to O (heat pump only) for single speed. A circuit from R to Y1 is also required for 2-speed high.

C. Cooling Mode—Two-Speed Low

Thermostat closes circuits R to Y1 and R to O (heat pump only). The Y1 & O signals are sent to ICM2.

D. Cooling Mode—Super Dehumidification Call from Thermostat

Thermostat closes circuits R to Y/Y2 and R to O (heat pump only) for single speed. A circuit from R to Y1 is also required for 2-speed high. Thermostat call for super dehumidification opens
The ICM adjusts airflow down to a lower CFM for maximum dehumidification for a period of 10 minutes. If this call continues, outdoor section and ICM shut off for 10 minutes. If super dehumidification call continues, lower CFM and outdoor section operation will again resume for another 10 minutes.

E. Electric Heat Heating Mode
Thermostat closes circuit R to W1 & W2.
The terminal block positions W1 and W2 are tied together by jumper. J2 is provided for field staging of electric heater banks through use of thermostats. When staging is a requirement, remove J2 jumper and wire in thermostats as is the common practice with other fan coils. To ensure motor operation if any 1 of the inputs is energized, motor will sense input W1 or W2 and run.

F. Heat Pump Heating Mode—Single Speed or 2-Speed High
Thermostat closes circuit R to Y/Y2 for single speed. A circuit from R to Y1 is also required for 2-speed high. The Y/Y2 &Y1 signal is sent to ICM2.

G. Heat Pump Heating Mode—Two-Speed Low
Thermostat closes R to Y1. The Y1 signal is sent to ICM2.

H. Heat Pump Heating With Auxiliary Electric Heat
Thermostat closes circuits R to Y/Y2 and/or R to Y1 with R to W1 or W2 (and R to O in the case of defrost).

The terminal block positions W1 and W2 are tied together by jumper. J2 is provided for field staging of electric heater banks through use of thermostats. When staging is a requirement, remove J2 jumper and wire in thermostats as is the common practice with other fan coils. To ensure motor operation if any 1 of the inputs is energized, motor will sense input W1 or W2 and run.

In the event that electric heating is called for by thermostat while heat pump is also operating in either heating or defrost mode, electric heating signal will appear at motor connector pins 6 and 7 (W1) and/or pins 4 and 5 (W2) as described previously. If necessary, the motor will modify its airflow output to provide an airflow which is defined as safe for operation of electric heater.

I. CFM Select Configuration Taps
The CFM Select taps are used by installer to configure system. The ICM2 is capable of discerning half cycle sine wave on some of its inputs and uses this capability to modify its operation to a pre-programmed table of airflows and can be modified in response to other inputs such as the need for dehumidification.

J. ICM2 Control Power
The ICM2 control power is supplied from R circuit through printed-circuit runs to motor control connector pin 8, through motor control harness to motor. The C side of low-voltage control power circuit is connected by printed-circuit runs to motor connector pins 9, 10 and 11 then through motor control harness to motor.
K. Low-Voltage Circuit Fusing and Reference
The low-voltage circuit is fused by a board-mounted 5-amp automotive-type fuse placed in series with transformer SEC2 and R circuit. The C circuit of transformer is referenced to chassis ground through a printed-circuit run at SEC1 connected to metal standoff marked.

NOTE: The PCB must be mounted with 2 screws and motor ground lead secured to blower housing or erratic motor operation can result.

L. Transformer, Motor, and Electric Heater Power Connections
Transformer high voltage supplied from electric heater package or high voltage leads through 12-pin heater connector plug/recp 2. The ICM2 power connections are made at the transformer primary terminals. The transformer secondary connections are made at SEC1 and SEC2 connectors.

XII. EASY SELECT CONFIGURATION TAPS
The Easy Select taps are used by installer to configure system. The ICM2 uses selected taps to modify its operation to a pre-programmed table of airflows. Airflows are based on system size or mode of operation and those airflows are modified in response to other inputs such as the need for de-humidification. (See Fig. 24.)

The FK4C and FV4A Fan Coils must be configured to operate properly with system components with which it is installed. To successfully configure a basic system (see information printed on circuit board located next to select pins), move the 6 select wires to pins which match components used, along with homeowner preferences.

A. Auxiliary Heat Range
The installer must select the auxiliary heat airflow approved for application with kw size heater installed. If no heater is installed,

Fig. 24—Easy Select Board
skip this step. Each select pin is marked with a range of heaters for which airflow (also marked) is approved. For increased comfort select the narrowest kw range matching the heater size, for example, 0-10 for a 10-kw heater. This airflow must be greater than the minimum CFM for electric heater application with the size system installed for safe and continuous operation. Note that airflow marked is the airflow which will be supplied in emergency heat mode and heating mode on air conditioners when electric heat is primary heating source. To ensure safe heater operation in heat pump heating mode when electric heaters are energized, the ICM2 will run the higher of heat pump airflow and electric heater airflow. The factory selection is largest heater range approved. (See Fig. 24.)

TABLE 7—CONNECTIONS ON SINGLE BARRIER STRIP MOUNTED, CROSS SLOTTED, CAPTIVE BINDING HEAD

<table>
<thead>
<tr>
<th>SCREW TERMINAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2</td>
<td>Connection for W2 signal from thermostat</td>
</tr>
<tr>
<td>W1</td>
<td>Connection for signal from thermostat W1</td>
</tr>
<tr>
<td>Y/Y2</td>
<td>Connection for Y signal from thermostat or high speed compressor operation</td>
</tr>
<tr>
<td>G</td>
<td>Connection for G signal from thermostat</td>
</tr>
<tr>
<td>O</td>
<td>Connection for O signal from thermostat</td>
</tr>
<tr>
<td>L</td>
<td>This connection is a field termination for use in connecting L lines of thermostat and outdoor unit together. There is no connection of this terminal with control circuity.</td>
</tr>
<tr>
<td>Y1</td>
<td>Connection for low-speed compressor operation</td>
</tr>
<tr>
<td>R</td>
<td>Connection for R signal to thermostat (24 vac)</td>
</tr>
<tr>
<td>C</td>
<td>Connection for C terminal to thermostat (24 vac common)</td>
</tr>
</tbody>
</table>

B. AC/HP Size
The factory setting for air conditioner or heat pump size is largest unit meant for application with model of fan coil purchased. The installer needs to select air conditioner or heat pump size to ensure that airflow delivered falls within proper range for size of unit installed in all operational modes. (See Fig. 24.)

C. System Type
The type of system must be selected.
1. AC—air conditioner
2. HP-COMFORT—provides lower airflow than air conditioner selection (approximately 315 CFM/ton) in heating mode. In cooling mode supplies 350 CFM/ton.
3. HP-EFF—provides same airflow for heating and cooling modes (approximately 350 CFM/ton).

The factory setting is AC. (See Fig. 24.)

D. **AC/HP CFM Adjust**

Select low, nominal, or high airflow. To provide any of these airflows, AC/HP ADJUST select must be moved to NOM position. The factory selection is NOM. The adjust selections HI/LO will regulate airflow supplied for all operational modes, except non-heat pump heating modes, +15 percent and -10 percent respectively. The adjust selection options are provided to adjust airflow supplied to meet individual installation needs for such things as noise, comfort, and humidity removal. (See Fig. 24.)

E. **AC/HP Time Delay**

Select desired time delay profile. Four motor operation delay profiles are provided to customize and enhance system operation. (See Fig. 24.) The selection options are:

1. The standard 90 sec off delay (factory setting 0/90).
2. No delay option used for servicing unit or when a thermostat is utilized to perform delay functions (0/0).
3. A 30 sec on/90 sec off delay profile used when it is desirable to allow system coils time to heat up/cold down prior to airflow. This profile will minimize cold blow in heat pump operation and could enhance system efficiency (30/90).
4. ENH, enhanced selection provides a 30 sec on/150 sec at 70 percent airflow and no off delay.

F. **Continuous Fan**

Select desired Continuous fan profile LO, MED, or HI. Airflow are provided to customize and enhance the continuous fan functions. (See Fig. 24.) The possible selections are:

1. LO—provides 50% of Y/Y2 Cool airflow.
2. MED—provides 65% of Cool airflow (71% on 006 model).
3. HI—provides 100% of Cool airflow.

The factory setting is LO.

NOTE: If applied to two-speed unit, do not select continuous fan as high since LO speed cooling will also run at HIGH airflow and insufficient dehumidification may result.

TABLE 8—CONNECTIONS AND CONNECTOR (FK4C)

<table>
<thead>
<tr>
<th>TYPE CONNECTION</th>
<th>TYPE CONNECTOR</th>
<th>PIN NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Connection</td>
<td>12-Pin</td>
<td>Pin 1</td>
<td>Common to screw terminal G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 2</td>
<td>Common to screw terminal Y/Y2 through diode D3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 3</td>
<td>Common to Y1 through diode D2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 4</td>
<td>Common to W2 screw terminal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 5</td>
<td>Common to W2 screw terminal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 6</td>
<td>Common to screw terminal W1 screw terminal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 7</td>
<td>Common to W1 screw terminal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 8</td>
<td>R 24VAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 9</td>
<td>Common to transformer C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 10</td>
<td>Common to transformer C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 11</td>
<td>Common to transformer C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin 12</td>
<td>Common to DH screw terminal</td>
</tr>
</tbody>
</table>

2. Check power leads L1 and L2. If these are not receiving power, system cannot function.

IF MOTOR HAS HIGH VOLTAGE APPLIED TO IT:

1. Check low-voltage transformer leads (red and brown). Be sure they are wired to correct locations. (See Fig. 24 and 26.)
2. Check low-voltage fuse shown in Fig. 24. If fuse is blown, replace it. The transformer cannot supply power to board with fuse blown or loose. If fuse blows when unit has power applied to it, the system most likely has 1 of the following problems:
 a. Check control circuit for a short or miswiring problem.
 b. The maximum load on transformer is 40 VA. If load on transformer is excessive, the low-voltage 5-amp fuse will blow to protect transformer. If load exceeds VA rating of transformer, a larger VA rated transformer needs to be installed.
 c. Check sequencers for excessive current draw.
 d. Check wiring of heaters. If a heater is miswired, fuse may blow. If a heater is miswired, correct miswiring.
3. Check yellow and black wire connections on primary side of transformer. If they are not connected properly, low-voltage transformer cannot supply 24-v signal to energize fan motor. If transformer is receiving correct primary voltage but is not putting out correct secondary voltage, transformer needs to be replaced.

B. If Electric Heat Stages Will Not Turn On But Fan Will Turn On:

1. Check wiring of sequencers. Pay particular attention to high- and low-voltage wiring of sequencers.
2. Check plug wiring to make sure that it is wired correctly.
3. Check voltage to sequencer. Sequencer number 1 receives a 24-vac signal. If it is receiving correct voltage, check to see if sequencer is closing. If sequencer is not closing but is receiving correct voltage, replace sequencer. If sequencer is closing, check high-voltage wiring as discussed in items 1 and 2.

IF TRACES ARE OVERHEATED ON BACK OF PCB:

Usually whenever there is a trace blown on PCB, it means either there has been a high-voltage short or high voltage has been applied to low-voltage circuit. This can be prevented by making sure PCB is wired correctly before fan coil has power applied to it.

C. If PCB Fuse Keeps Blowing:

When low-voltage fuse blows, it means transformer would have blown if fuse had not been in circuit to protect it. The fuse usually blows when there is a high current drawn on transformer, high...
CAUTION:
NOT SUITABLE FOR USE ON SYSTEMS EXCEEDING
150V TO GROUND
NE CONVIENT PAS AUX INSTALLATIONS DE PLUS
DE 150 V A LA TERRE

NOTES:
1. USE COPPER WIRE (75°C MIN) ONLY BETWEEN DISCONNECT
 SWITCH AND UNIT.
2. TO BE WIRED IN ACCORDANCE WITH NEC AND LOCAL CODES.
3. TRANSFORMER PRIMARY LEADS, BLUE 208V, RED 230V.
4. IF ANY OF THE ORIGINAL WIRE, AS SUPPLIED, MUST BE REPLACED, USE
 THE SAME OR EQUIVALENT TYPE WIRE.
5. REPLACE LOW VOLTAGE FUSE WITH NO GREATER THAN 5 AMP FUSE.
6. DUAL CIRCUIT WIRING SHOWN.
7. USE 60 AMP CLASS K FUSES ONLY, FOR REPLACEMENT.
8. CONNECT R TO R, G TO G, ETC. SEE OUTDOOR INSTRUCTION FOR
 DETAILS.

Fig. 26—FK4C and FV4A Wiring Diagram
A. If Motor Does Not Run:

1. With power turned off, check all plugs and receptacles on circuit board and at motor for any deformation that may cause a bad connection. Be sure all plugs are placed fully seated.

2. Verify that there is approximately 230v.

3. Verify that there is a low-voltage control signal to motor. The motor receives its control signals through the 12-pin motor plug PL1. The voltage output of each pin in plug will be different for each mode of operation. Table 9 lists circuit board screw terminals that have 24 vac present (powered by thermostat) and lists voltage that is present at each pin of motor plug PL1. The voltage output of each pin in plug will be different for each mode of operation. Table 9 lists circuit board screw terminals that have 24 vac present (powered by thermostat) and lists voltage that is present at each pin of motor plug PL1. The voltage applied to low-voltage circuit, or a direct secondary short. When there is a high current drawn on transformer, it is most likely because transformer has been shorted or system is trying to draw more va than transformer rating allows. When fuse blows because of high voltage, the system has mixed high- and low-voltage signals.

1. Check transformer and thermostat wiring. (See Fig. 24 and 26.) Be sure transformer is not shorting out because thermostat wires are miswired.

2. Check wiring of sequencers. (See Fig. 24 and 26.) Be sure low-voltage and high-voltage wiring are connected to proper sequencers.

3. Check VA draw on transformer. If VA draw is more than VA rating of transformer, fuse will blow. If this is the case, replace transformer with one that has a higher VA rating.

B. If Motor Does Not Run Smoothly:

First verify that the cause is not an out-of-balance or damaged blower wheel. If it is not blower wheel, motor is defective and should be replaced.

C. If Motor Shaft Does Not Rotate Smoothly:

When manually turning shaft of ICM, the shaft does not rotate smoothly. The shaft has steps during rotation referred to as motor cogging. The cogging is caused by permanent magnets passing each pole of motor. However, shaft should not require excessive force to turn. If shaft is VERY difficult to turn, motor control or bearings have failed and motor must be replaced.

D. If Motor Does Not Stop Running

1. Check for good ground between motor ground lead and transformer common lead.

2. If motor continues to run, remove all thermostat wires. If motor stops, check thermostat wiring to thermostat or outdoor unit for shorts or miswire.

XV. CONDENSED VERSION OF TROUBLESHOOTING FK4C AND FV4A MOTOR AND CONTROLS

This section provides a quick summary of how to troubleshoot the FK4C and FV4A. If more information is needed, refer to appropriate sections of this service manual.

** + MOTOR

1. If motor is hard to turn manually, replace motor.
2. If motor does not run, check the components listed below according to their instructions.
3. If motor runs in some operation modes and not in others, check for a good ground connection between motor ground lead and circuit board screw marked "ground screw" and check the room thermostat and wiring harness according to instructions listed below.

** + CIRCUIT BOARD

1. Check 5-amp fuse.
2. Check for 24v between SEC1 and SEC2. If no voltage is present, check the transformer.
3. Check for burn traces or burnt components. If burn spots are present, replace board.

** + ROOM THERMOSTAT

1. Remove thermostat wires from the circuit board.
2. Jumper screw terminals (1 at a time) R-G, R-Y/Y2, R-Y1, and R-W1. If motor runs in all cases, thermostat is bad. Replace thermostat. If motor does not run, or runs in some cases but not in others, continue by checking the wiring harness.

** + WIRING HARNESS

1. Shut off power to unit.
2. Remove 5-pin plug from motor.
3. Remove 16-pin plug from motor.
4. Replace 5-pin plug and turn on power.

** TABLE 9—FK4C MOTOR CONTROL TEST VALUES (WITH 16-PIN CONNECTOR AT MOTOR UNPLUGGED)

<table>
<thead>
<tr>
<th>OPERATING MODE</th>
<th>SCREW TERMINALS HAVING 24 VAC</th>
<th>** VOLTAGES—12-PIN PLUG PL1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>Heating R W1 W2</td>
<td>W1 Pin 7</td>
</tr>
<tr>
<td>1-Speed A/C</td>
<td>R W1 Y/Y2 R Y1</td>
<td>G 24 vac 0 0 0 24 vac -12 vdc 0</td>
</tr>
<tr>
<td>2-Speed A/C, Low Speed</td>
<td>R Y1 G 24 vac 0 0 24 vac 0 0 24 vac -12 vdc -12 vdc</td>
<td></td>
</tr>
<tr>
<td>2-Speed A/C, High Speed</td>
<td>R Y/Y2 G Y1 G 0 24 vac 0 24 vac 0 -12 vdc 0</td>
<td></td>
</tr>
<tr>
<td>1-Speed HP</td>
<td>Heating R Y/Y2 G</td>
<td>0 24 vac 0 0 24 vac -12 vdc 0</td>
</tr>
<tr>
<td>2-Speed HP, Low Speed</td>
<td>R Y1 G O 24 vac 0 0 24 vac -12 vdc -12 vdc</td>
<td></td>
</tr>
<tr>
<td>2-Speed HP, High Speed</td>
<td>R Y/Y2 Y1 G 0 24 vac 0 24 vac -12 vdc -12 vdc</td>
<td></td>
</tr>
<tr>
<td>Continuous Fan</td>
<td>Low R G</td>
<td>0 24 vac 0 0 24 vac 0 0 24 vac -12 vdc 0</td>
</tr>
<tr>
<td>Continuous Fan</td>
<td>Medium R G</td>
<td>0 24 vac 0 0 24 vac 0 0 24 vac -12 vdc 0</td>
</tr>
<tr>
<td>Continuous Fan</td>
<td>High R G</td>
<td>0 24 vac 0 0 24 vac 0 0 24 vac -12 vdc 0</td>
</tr>
</tbody>
</table>

** AC Voltages less than 18 are not recognized by the ICM.
XVI. ACCESSORIES

A. Electronic Air Cleaner (EAC)

230-vac EAC control/power signal EAC1 and EAC2 is not available, because the ICM2 blower motor used in the FK4C and FV4A Fan Coils is controlled by low-voltage signals. This signal is replaced by a 24-vac signal which is provided at circuit board terminals AUX1 and AUX2. (See Fig 24.) This signal is present when either G or W is present and is active in all heating and cooling modes. User-supplied 110 vac is switched by relay to power air cleaner when G or W are present. (See Fig 28.)

B. FK4C and FV4A De-Humidify Mode

NOTE: Humidistat must open on humidity rise.

Latent capacities for systems using the FK4C and FV4A fan coils are better than average systems. If increased latent capacity is an application requirement, the field wiring terminal block provides connection terminals for use of a standard humidistat. The FK4C and FV4A fan coils will detect the humidistat contacts opening on increasing humidity and reduce its airflow to approximately 80 percent of nominal cooling mode airflow. This reduction will increase the system latent capacity until the humidity falls to a level which causes the humidistat to close its contacts. When the contacts close, airflow will return to 100 percent of the selected cooling airflow. To activate this mode, remove jumper J1 and wire in a standard humidistat. (See Fig. 29.) Carefully consult product airflow data for cooling and dehumidification modes.

![Humidistat Wiring for De-Humidify Mode](image)

The FK4C, FK4D, FX4A and FV4A Fan Coils are factory equipped with a hard shutoff (HSO) TXV. The hard shutoff TXV has no bleed port and allows no bleed-through after system is shutdown. No pressure equalization occurs. A start capacitor and relay must be installed on single-phase reciprocating compressors to boost torque to compressor motor so it may overcome the unequalized system pressures.

The standard TXV is a bi-flow metering device that is used in condensing and heat pump systems to adjust to changing load conditions by maintaining a preset superheat temperature at outlet of evaporator coil. The volume of refrigerant metered through valve seat is dependent upon the following:

1. Superheat temperature sensed by sensing bulb on suction tube at outlet of evaporator coil. As long as this bulb contains some liquid refrigerant, this temperature is converted into pressure pushing downward on the diaphragm, which opens the valve via push rods.
2. The suction pressure at outlet of evaporator coil is transferred via the external equalizer tube to underside of diaphragm.
3. The needle valve on pin carrier is spring-loaded, which also exerts pressure on underside of diaphragm via push rods, which closes valve. Therefore, bulb pressure equals evaporator pressure at outlet of coil plus spring pressure. If load increases, temperature increases at bulb, which increases pressure on topside of diaphragm, which pushes pin carrier away from seal, opening valve and increasing flow of refrigerant. The increased refrigerant flow causes increased leaving evaporator pressure which is transferred via the equalizer tube to underside of diaphragm, with which the pin carrier spring pressure closes valve. The refrigerant flow is effectively stabilized to load demand with negligible change in superheat.

The bi-flow TXV is used on split system heat pumps. In cooling mode, TXV operates the same as a standard TXV previously explained. However, when system is switched to heating mode of operation, refrigerant flow is reversed. The bi-flow TXV has an additional internal check valve and tubing. These additions allow refrigerant to bypass TXV when refrigerant flow is reversed with only a 1- to 2-psig pressure drop through device. When heat pump switches to defrost mode, refrigerant flows through a completely open (not throttled) TXV. The bulb senses the residual heat of outlet tube of coil that had been operating in heating mode (about 85°F and 155 psig). This temporary, not throttled valve, decreases indoor pressure drop, which in turn increases refrigerant flow rate, decreases overall defrost time, and enhances defrost efficiency.
I. PROBLEMS AFFECTING TXV

A. Low Suction Pressure
1. Restriction in TXV
2. Low refrigerant charge
3. Low indoor load
4. Low evaporator airflow

B. High Suction Pressure
1. Overcharging
2. Sensing bulb not secure to vapor tube
3. High indoor load
4. Large evaporator face area

When installing or removing TXV, wrap TXV with a wet cloth. When reattaching TXV, make sure sensing bulb is in good thermal contact with suction tube.

PISTON BODY CLEANING OR REPLACEMENT

CAUTION: Do not vent refrigerant to atmosphere. Recover during system repair or final unit disposal.

CAUTION: Damage may occur to the scroll compressor if operated at a negative suction pressure during a system pumpdown.

1. Pump down outdoor unit. Close service valves at outdoor unit.
2. Recover remaining refrigerant from tubing and coil through gage port on vapor-tube service valve.
3. Disconnect refrigerant (liquid) tube from piston body. (See Fig. 30.)
4. Avoid damaging seal ring or machined surfaces on piston, bore, and retainer.
5. Using small wire with a hook on end of it, remove piston from body.
6. Install new or cleaned piston into body.
7. Replace seal ring on retainer.
8. Reconnect refrigerant tube to piston body.
9. Pressurize tubing and coil, then leak check.
10. Evacuate tubing and coil as necessary.

LIQUID TUBE STRAINER
The TXV and refrigerant flow-control device is protected on the indoor coil by a wire mesh strainer. It is located inside the 3/8-in. liquid tube at field braze joint just outside unit casing. Access to strainer is through field braze joint.

FA, FB, FC, FK COIL/CONDENSATE PAN REMOVAL AND REPLACEMENT

I. A-COIL UNITS

If it is determined that system does not have leaks and refrigerant is not contaminated, proceed as follows:

1. Recover system refrigerant.
 a. Attach manifold/gage set to service valves.
 b. Front seat (close) liquid tube service valve.
 c. Start unit in cooling mode.
 d. Run unit until low pressure switch opens at 27 psig or vapor pressure reaches 5 psig (35kPa). Do not allow compressor to pump into a vacuum.

Fig. 30—Refrigerant Flow-Control Device (For FA, FB, and FF)

CAUTION: When cleaning the piston orifice, be careful not to scratch or enlarge the opening, as this will affect operation.

e. Turn off electrical supply to outdoor unit.

f. Front seat vapor service valve.

g. Recover any remaining refrigerant.

NOTE: All outdoor unit coils will hold only factory-supplied amount of refrigerant. Excess refrigerant, such as in long-tube applications, may cause compressor internal pressure relief valve to open (indicated by sudden rise in vapor pressure) before vapor pressure reaches 5 psig (35kPa). If this occurs, turn off electrical supply to outdoor unit immediately, front seat vapor service valve, and recover any remaining refrigerant.

2. Turn off electrical supply to indoor unit.

3. Disconnect condensate drain tube.

4. Disconnect liquid and vapor tubes from indoor coil. Use a tubing cutter to cut tubes.

NOTE: If a torch is used to unbraze tube set, protect fitting panel with a wet cloth or braze shield, as necessary.

5. Remove coil access panel.

6. Remove clip securing fitting panel to condensate drain pan. Remove fitting panel.

7. Remove any shipping clips, including horizontal pan clip, and slide coil/condensate pan assembly out of unit.

8. **Upflow or Horizontal Applications Only**—Remove horizontal condensate drain pan from coil/condensate pan assembly. (See Fig. 31.)

9. Remove 4 coil brackets. (See Fig. 31.)

10. Remove screws at delta plates and remove coil from vertical condensate drain pan. (See Fig. 31.)

11. **Horizontal Applications Only**—Remove coil top seal (attached with 4 screws) and J-shaped tube from original coil and install it in same position on new coil. (See Fig. 31.)

12. Place coil assembly in plastic condensate pan and secure using 4 screws through delta plate. (See Fig. 31.)

13. **Horizontal and Upflow Applications Only**—Attach 4 coil brackets to coil/pan assembly. (See Fig. 31.)

14. **Horizontal Applications only**—Place horizontal condensate pan into position on coil/pan assembly.

NOTE: Installation of horizontal condensate pan is not necessary for upflow or downflow applications.

15. Slide complete assembly into unit.

16. Reinstall fitting panel and reconnect clip securing fitting panel to condensate drain pan.

17. **Horizontal Applications Only**—Reinstall horizontal pan clip. Secure with 1 screw. (See Fig. 31.)

18. Reinstall coil access panel.

20. Evacuate tube set and indoor coil to 500 microns, back seat (open) liquid and vapor service valves.

21. Turn on electrical supplies to indoor and outdoor units.

II. SLOPE COIL UNITS

If it is determined that system does not have leaks and refrigerant is not contaminated, proceed as follows:

1. Recover system refrigerant.

a. Attach manifold/gage set to service valves.

b. Front seat (close) liquid tube service valve.

c. Start unit in cooling mode.

d. Run unit until low pressure switch opens at 27 psig or vapor pressure reaches 5 psig (35kPa). Do not allow compressor to pump into a vacuum.

e. Turn off electrical supply to outdoor unit.

f. Front seat vapor service valve.

NOTE: All outdoor unit coils will hold only factory-supplied amount of refrigerant. Excess refrigerant, such as in long-tube applications, may cause compressor internal pressure relief valve to open (indicated by sudden rise in vapor pressure) before vapor pressure reaches 5 psig (35kPa). If this occurs, turn off electrical supply to outdoor unit immediately, front seat vapor service valve, and recover any remaining refrigerant.

2. Turn off electrical supply to indoor unit.

3. Disconnect condensate drain tube.

4. Disconnect liquid and vapor tubes from indoor coil. Use either a tubing cutter to cut tubes or a torch to unbraze tubes as required.

NOTE: If a torch is used to unbraze line set, protect fitting panel with a wet cloth or braze shield, as necessary. System contains oil vapors which may ignite when exposed to a flame.

5. Remove coil access and fitting panels.

6. Remove 1 screw securing coil to unit casing.

7. Remove coil/pan assembly from unit.

8. Place assembly on a flat surface. Remove 2 screws securing coil support columns to pan. (See Fig. 32.)

9. Rotate columns 90°, pull away from coil, and remove columns from assembly.

10. Remove remaining 2 screws securing coil to condensate pan.

11. Remove coil from condensate pan.

12. Remove coil top seal. (See Fig. 32.)

---37---
13. Install new coil into condensate pan using 2 original screws and 2 support columns.

NOTE: Correct coil position in condensate pan is essential to reliable operation.

15. Reinstall coil access and fitting panels.

17. Evacuate tube set and indoor coil to 500 microns, back seat (open) liquid and vapor service valves.

18. Turn on electrical supplies to indoor and outdoor units.

FX4A AND FV4A COIL/CONDENSATE PAN REMOVAL AND REPLACEMENT (PURON REFRIGERANT)

I. A-COIL UNITS

If it is determined that system does not have leaks and refrigerant is not contaminated, proceed as follows:

1. Recover system refrigerant.
 a. Attach manifold/gage set to service valves.
 b. Front seat (close) liquid tube service valve.
 c. Start unit in cooling mode.
 d. Run unit until low pressure switch opens at 50 psig (350kPa) or vapor pressure reaches 5 psig (35kPa). Do not allow compressor to pump into a vacuum.
 e. Turn off electrical supply to outdoor unit.
 f. Front seat vapor service valve.
 g. Recover any remaining refrigerant.

NOTE: All outdoor unit coils will hold only factory-supplied amount of refrigerant. Excess refrigerant, such as in long-tube applications, may cause compressor internal pressure relief valve to open (indicated by sudden rise in vapor pressure) before vapor pressure reaches 5 psig (35kPa). If this occurs, turn off electrical supply to outdoor unit immediately, front seat vapor service valve, and recover any remaining refrigerant.

2. Turn off electrical supply to indoor unit.

3. Disconnect condensate drain tube.

4. Disconnect liquid and vapor tubes from indoor coil. Use a tubing cutter to cut tubes.

NOTE: If a torch is used to unbraze tube set, protect fitting panel with a wet cloth or braze shield, as necessary.

5. Remove coil access panel.

6. Remove clip securing fitting panel to condensate drain pan. Remove fitting panel.

7. Remove any shipping clips, including horizontal pan clip, and slide coil/condensate pan assembly out of unit.

8. **Upflow or Horizontal Applications Only**—Remove horizontal condensate drain pan from coil/condensate pan assembly. (See Fig. 31.)

9. Remove 4 coil brackets. (See Fig. 31.)

10. Remove screws at delta plates and remove coil from vertical condensate drain pan. (See Fig. 31.)

11. **Horizontal Applications Only**—Remove coil top seal (attached with 4 screws) and J-shaped tube from original coil and install it in same position on new coil. (See Fig. 31.)

12. Place coil assembly in plastic condensate pan and secure using 4 screws through delta plate. (See Fig. 31.)

13. **Horizontal and Upflow Applications Only**—Attach 4 coil brackets to coil/pan assembly. (See Fig. 31.)

14. **Horizontal Applications only**—Place horizontal condensate pan into position on coil/pan assembly.

NOTE: Installation of horizontal condensate pan is not necessary for upflow or downflow applications.

15. Slide complete assembly into unit.

16. Reinstall fitting panel and reconnect clip securing fitting panel to condensate drain pan.

17. **Horizontal Applications Only**—Reinstall horizontal pan clip. Secure with 1 screw. (See Fig. 31.)

18. Reinstall coil access panel.

20. Evacuate tube set and indoor coil to 500 microns, back seat (open) liquid and vapor service valves.

21. Turn on electrical supplies to indoor and outdoor units.

II. SLOPE COIL UNITS

If it is determined that system does not have leaks and refrigerant is not contaminated, proceed as follows:

1. Recover system refrigerant.
 a. Attach manifold/gage set to service valves.
 b. Front seat (close) liquid tube service valve.
 c. Start unit in cooling mode.
 d. Run unit until low pressure switch opens at 50 psig (350kPa) or vapor pressure reaches 5 psig (35kPa). Do not allow compressor to pump into a vacuum.
 e. Turn off electrical supply to outdoor unit.
 f. Front seat vapor service valve.
 g. Recover any remaining refrigerant.

NOTE: All outdoor unit coils will hold only factory-supplied amount of refrigerant. Excess refrigerant, such as in long-tube applications, may cause compressor internal pressure relief valve to open (indicated by sudden rise in vapor pressure) before vapor pressure reaches 5 psig (35kPa). If this occurs, turn off electrical supply to outdoor unit immediately, front seat vapor service valve, and recover any remaining refrigerant.

2. Turn off electrical supply to indoor unit.

3. Disconnect condensate drain tube.

4. Disconnect liquid and vapor tubes from indoor coil. Use either a tubing cutter to cut tubes or a torch to unbraze tubes as required.

NOTE: If a torch is used to unbraze line set, protect fitting panel with a wet cloth or braze shield, as necessary. System contains oil vapors which may ignite when exposed to a flame.

5. Remove coil access panels.

6. Remove 1 screw securing coil to unit casing.

7. Remove coil/pan assembly from unit.

8. Place assembly on a flat surface. Remove 2 screws securing coil support columns to pan. (See Fig. 32.)

9. Rotate columns 90°, pull away from coil, and remove columns from assembly.
10. Remove remaining 2 screws securing coil to condensate pan.
11. Remove coil from condensate pan.
12. Remove coil top seal. (See Fig. 32.)
13. Install new coil into condensate pan using 2 original screws and 2 support columns.

NOTE: Correct coil position in condensate pan is essential to reliable operation.

15. Reinstall coil access and fitting panels.
16. Reconnect liquid and vapor refrigerant tubes, and condensate drain tube. Install new Puron (R-410A) liquid line filter-drier.
17. Evacuate tube set and indoor coil to 500 microns, back seat (open) liquid and vapor service valves.
18. Turn on electrical supplies to indoor and outdoor units.

CARE AND MAINTENANCE

To continue high performance, and minimize possible equipment failure, it is essential periodic maintenance be performed on this equipment.

The ability to properly perform maintenance on this equipment requires certain mechanical skills and tools. The only consumer service recommended or required is filter maintenance. (See Filter Assembly.)

| WARNING: | Disconnect all power to the unit before servicing the field wires or removing the control package. The disconnect (when used) on the access panel does not disconnect power to the line side of the disconnect, but does allow safe service to all other parts of the unit. Electrical shock can cause personal injury or death. |

The minimum maintenance requirements for this equipment are as follows:

1. Inspect and clean or replace air filter each month or as required.
2. Inspect cooling coil, drain pan, and condensate drain each cooling season for cleanliness. Clean as necessary. An inspection port is provided on all A-coil delta plates. Remove plastic plug to inspect. Replace plug after inspection.
3. Inspect blower motor and wheel for cleanliness each heating and cooling season. Clean as necessary. An inspection port is provided on all A-coil delta plates. Remove plastic plug to inspect. Replace plug after inspection.
4. Inspect electrical connections for tightness and controls for proper operation each heating and cooling season. Service as necessary.

| WARNING: | As with any mechanical equipment, personal injury can result from sharp metal edges. Be careful when removing parts. |

I. FILTER ASSEMBLY

To clean or replace air filter, push plastic connectors toward center of unit and remove filter access panel outward. Push filter up and back into unit. Then slide filter out. Clean filter by using cold water and mild detergent. Rinse and allow filter to dry. No oiling or coating of filter is required. New filters are available from your local distributor. Place filter in slot with cross-mesh binding up or facing cooling coil and replace filter access panel.

II. COOLING COIL, DRAIN PAN, AND CONDENSATE DRAIN

The cooling coil is easily cleaned when it is dry. Inspect the coil and clean (if necessary) before each cooling season. To check or clean cooling coil, remove coil access panel. If coil is coated with dirt or lint, vacuum it with a soft brush attachment.

Be careful not to bend coil fins. If coil is coated with oil or grease, clean it with a mild detergent and water solution. Rinse coil thoroughly with clear water. Be careful not to splash water on insulation.

Inspect drain pan and condensate drain at the same time cooling coil is checked. Clean drain pan and condensate drain by removing any foreign matter from pan. Flush pan and drain tube with clear water.

If drain tube is restricted, it can generally be cleared by high-pressure water. Cut plastic line and work outside condensate pan and away from coil to clean drain tube.

| CAUTION: | Do not use caustic household drain cleaners in the condensate pan or near the coil. Drain cleaners can quickly destroy a coil. |

III. BLOWER MOTOR AND WHEEL

Clean blower motor and wheel when cooling coil is cleaned.

| CAUTION: | Disconnect electrical power before removing any access panels. |

To clean blower motor or blower wheel:

1. Remove blower access panel.
2. Remove motor leads from PCB. Note lead location for ease of reassembly.
3. Remove 2 outside screws holding blower/motor assembly against blower-deck flange and slide assembly out of cabinet.
4. Remove screw in strap holding motor capacitor to blower housing and slide capacitor out from under strap. Remove screw with green wire from blower housing. Mark blower wheel, motor, and motor support in relation to blower housing before disassembly to ensure proper reassembly. Note position of blades on wheel.
5. Loosen setscrew holding blower wheel onto motor shaft.
6. Remove 3 bolts holding motor mount to blower housing and slide motor and mount out of housing. Further disassembly should not be necessary as adequate clearance is available.
7. Remove blower wheel from housing by removing cutoff plate from blower housing outlet. Note wheel orientation and cutoff location for reassembly. The blower motor and wheel may be cleaned by using a vacuum with a soft-brush attachment.
8. Remove grease with a mild solvent such as hot water and detergent. Be careful not to disturb balance weights (clips) on blower-wheel vanes. Also, do not drop or bend wheel, as balance will be affected.

To reassemble blower:

1. Place blower wheel back into housing. Be sure to position correctly for proper location.
II. ELECTRIC HEATER SERVICE

Service can be completed with heater in place. Shut off power before servicing.

A. Limit Switch

Refer to Electric Heater Function and Troubleshooting section of this manual.

B. Sequencer

Refer to Electric Heater Function and Troubleshooting section of this manual.

C. Transformer

A 40-VA transformer supplies 24-v power for control circuit. Check for 208/230v on primary side of transformer. If present, check for 24v on secondary side.

NOTE: Transformer is fused. Do not short circuit.

D. Fan Relay

Relay coil is 24 volts. Check for proper control voltage. Replace relay if faulty.

III. CLEANING OR REPLACING REFRIGERANT FLOW-CONTROL DEVICE

Refer to Fig. 30 and instructions given in Piston Body Cleaning or Replacement section above.

IV. LIQUID TUBE STRAINER

The refrigerant flow-control device is protected by a wire mesh strainer. It is located inside the 3/8-in. liquid tube at field braze joint next to flow-control device. Access to strainer is through field braze joint.

V. SEQUENCE OF OPERATION

Refer to Fig. 33.

A. Condensing Unit

COOLING

When thermostat calls for cooling, the circuit between R and G is complete and single-pole single-throw relay FR is energized. The normally-open contacts close causing blower to operate. The circuit between R and Y is also complete. This completed circuit causes contactor in outdoor unit to close which starts compressor and outdoor fan.

HEATING

When thermostat calls for heating and FAN switch is set on AUTO, the circuit between R and W is complete. The heater sequence SEQ is energized which closes contacts of relay. There will be a time delay. This completed circuit energizes all heating elements HTR and blower motor.

B. Heat Pump

COOLING

On a call for cooling, the thermostat makes circuits R-O, R-Y, and R-G. Circuit R-O energizes reversing valve, switching it to cooling position. Circuit R-Y energizes contactor starting outdoor fan motor and compressor. Circuit R-G energizes indoor unit blower relay starting indoor blower motor. When thermostat is satisfied, its contacts open de-energizing contactor reversing valve and blower relay. This stops compressor and fan motors.

HEATING

On a call for heating, the thermostat makes circuits R-Y and R-G. Circuit R-Y energizes contactor starting outdoor fan motor and compressor. Circuit R-G energizes indoor blower relay starting blower motor. Should temperature continue to fall, R-W circuit is made through second-stage room thermostat bulb. Circuit R-W energizes a sequencer bringing on supplemental electric heat. When thermostat is satisfied, its contacts open de-energizing contactor and sequencer. All heaters and motors should stop.

VI. CARE AND MAINTENANCE

The minimum maintenance requirements for this equipment are as follows:

1. Inspect and clean or replace air filter each month or as required.
2. Inspect cooling coil, drain pan, and condensate drain each cooling season for cleanliness. Clean as necessary.
3. Inspect blower motor and wheel for cleanliness each heating and cooling season. Clean as necessary.
4. Inspect electrical connections for tightness and controls for proper operation each heating and cooling season. Service as necessary.

WARNING: Before installation or servicing system, always turn off main power to system. There may be more than 1 disconnect switch. Turn off accessory heater power if applicable. Electrical shock can cause personal injury or death.
Fig. 33—FF1A/FF1B/FF1C Typical Unit Wiring Label
WARNING: As with any mechanical equipment, personal injury can result from sharp metal edges. Be careful when removing parts.

A. Air Filter

To clean or replace air filter, grasp it at bottom and lift it out of unit. Clean filter using cold water. Rinse clean and let dry. Oiling or coating of filter is not required. To replace, stand filter in rack with binding facing coil. Press top edge under access panel.

NOTE: Steel rods in filter prevent it from being pulled into coil. Retain these rods and reinstall after cleaning or before replacement if new filter is used.

CAUTION: Never operate unit without a filter.

B. Cooling Coil, Drain Pan, and Condensate Drain

The cooling coil is easily cleaned when it is dry. Inspect coil and clean (if necessary) before each cooling season. To check or clean cooling coil, remove blower/heater access panel to gain full access to cooling coil. If coil is coated with dirt or lint, vacuum with a soft brush attachment.

Be careful not to bend coil fins. If coil is coated with oil or grease, clean it with a mild detergent-and-water solution. Rinse coil with clear water. Be careful not to splash water onto insulation.

Inspect drain pan and condensate drain at same time cooling coil is checked. Clean drain pan and condensate drain by removing any foreign matter from pan. Flush pan and drain tube with clear water.

If drain tube is restricted, it can generally be cleared by high-pressure water. Cut plastic line and work outside condensate pan and away from coil to clear drain tube.

NOTE: There MUST be a trap in condensate line. Trap must be at least 3-in. deep, not higher than the bottom of unit condensate drain opening, and pitched downward to an open drain or sump.

CAUTION: Do not use caustic household drain cleaners in condensate pan or near coil. Drain cleaners can quickly destroy coils.

C. Blower Motor and Wheel

Clean blower motor and wheel when cooling coil is cleaned.

To clean or service wheel or motor, proceed as follows:

1. Pull unit disconnect (when used) and remove blower access panel.
2. Disconnect motor electrical leads from control box and capacitor. Mark location of wires for reassembly.
3. Remove 3 bolts holding motor mount to blower housing while supporting motor shell with hand.
4. Pull motor inlet ring and blower wheel assembly out of blower housing.
5. With blower wheel, inlet ring, and motor mount still attached to motor, place motor on flat, horizontal surface, shaft up. Mark position of wheel on motor shaft for reassembly.
6. Loosen blower wheel setscrew and remove blower wheel from motor shaft.

NOTE: Further disassembly of motor and mount is not necessary as adequate clearance is available to clean motor.

7. Clean blower motor and wheel using a vacuum with a soft brush attachment. Remove grease with a mild solvent such as hot water and detergent. Be careful not to disturb balance weights (clips) on blower wheel vanes. Do not drop or bend wheel as balance will be affected.

To reassemble unit, proceed as follows:

1. Place motor with mount attached on flat, horizontal surface with shaft up.
2. Set inlet ring on top of motor mount grommets. Center inlet ring flush on all 3 grommets.
Fig. 35—FD3A Typical Wiring Diagram

NOTES:
1. TRANSFORMER PIGTAILS: BLUE 208V; RED 230V; INSULATE UNUSED LEAD.
2. FAN MOTOR PIGTAILS: RED LOW; BLACK HIGH, INSULATE UNUSED LEAD.
3. FAN MOTOR THERMALLY PROTECTED.
4. SUITABLE FOR USE WITH COPPER OR COPPER CLAD ALUMINUM CONDUCTORS RATED FOR 75°C MINIMUM. FOR COPPER USE 6 AWG. FOR COPPER CLAD ALUMINUM USE 4 AWG.

- LEGEND -
- FIELD POWER WIRING
- FIELD GROUND WIRING
- FIELD CONTROL WIRING
- FIELD SPLICE
- JUNCTION
- MARKED CONNECTION
- UNMARKED CONNECTION
- FC
- FAN CAPACITOR
- FR
- FAN RELAY
- HTR
- HEATER
- IFM
- INDOOR FAN MOTOR
- LS
- LIMIT SWITCH
- QT
- QUAD TERMINAL
- SEQ
- SEQUENCER
- TB
- TERMINAL BLOCK
- TRANS
- TRANSFORMER

- OPTIONAL FUSIBLE LINK
- WIRE SLEEVE

- SCHEMATIC DIAGRAM
- COMPONENT ARRANGEMENT
- FIELD POWER WIRING
- DISCONNECT PER N.E.C.
3. Slide blower wheel onto motor shaft with setscrew upward and aligned with shaft flat portion. Vertically position wheel along shaft to position marked during disassembly.

NOTE: If previous shaft was not marked or if replacing previous motor, set blower wheel position by sliding blower wheel along motor shaft to 1-1/8 in. above rubber grommets. (See Fig. 34.)

4. Hold blower wheel in place and carefully tighten setscrew.

5. Position motor and blower wheel assembly to blower housing as originally oriented.

6. Secure motor mount to blower housing using bolts previously removed.

7. Attach green wire to blower housing with screw.

8. Connect electrical and capacitor leads to original terminals.

9. Replace blower access door and tighten all 4 screws.

10. Reinsert disconnect pullout only after blower access door is secured. Test blower for proper operation.

FD3A SERVICE AND TROUBLESHOOTING

WARNING: Before installation or servicing system, always turn off main power to system. There may be more than 1 disconnect switch. Turn off accessory heater power if applicable. Electrical shock can cause personal injury or death.

I. FAN MOTOR

The motor is 2-speed direct drive. High-speed lead is black, low-speed lead is red, and common lead is yellow.

NOTE: Unused fan speed leads must be tapped off to prevent direct short to cabinet surface.

The motor is turned on through 2 different routes. The first occurs when thermostat calls for the fan in cooling, heat pump, or fan-only mode. A 24-vac signal is sent to relay, causing relay to close its normally-open contacts, turning fan on. The second occurs when there is a call for electric heat. A 24-vac signal is sent to heater sequencer, causing it to close, directing 230v through the normally-closed contact of fan relay, turning fan on. The fan remains on until sequencer opens. Refer to FD3A typical wiring diagram. (See Fig. 35.)

II. ELECTRIC HEATER SERVICE

Service can be completed with heater in place. Shut off power before servicing.

A. Limit Switch

Refer to Electric Heater Function and Troubleshooting section of this manual.

B. Sequencer

Refer to Electric Heater Function and Troubleshooting section of this manual.

C. Transformer

A 60-VA transformer supplies 24-v power for control circuit. Check for 208/230-v on primary side of transformer. If present, check for 24-v on secondary side. Replace transformer if faulty.

NOTE: Transformer is fused. Do not short circuit.

D. Fan Relay

Relay coil is 24 volts. Check for proper control voltage. Replace relay if faulty.

E. Heater Removal

Disconnect wiring, remove 2 sheet metal screws, and pull heater out through open hinged access panel. When replacing heater, ensure orientation of heater element is same as when removed.

III. CLEANING OR REPLACING REFRIGERANT FLOW-CONTROL DEVICE

1. Pump down outdoor unit. Close service valves at outdoor unit.

CAUTION: Damage may occur to the scroll compressor if operated at a negative suction pressure during a system pumpdown.

2. Bleed and (if possible) recover remaining refrigerant from tubing and coil through gage port on vapor-tube service valve.

3. Disconnect liquid refrigerant tube from refrigerant flow-control device. Refer to Fig. 36.

4. Remove refrigerant flow-control device piston retainer. Avoid damaging O-ring or machined surfaces on piston, bore, and retainer.

5. Using small wire with a hook on end of it, remove piston from refrigerant flow-control device body.

IV. LIQUID TUBE STRAINER

The refrigerant flow-control device is protected on indoor coil by a wire mesh strainer. If strainer becomes plugged:

1. Complete items 1 and 2 under Cleaning or Replacing Refrigerant Flow-Control Device section.

2. Loosen flare fitting joint connecting refrigerant flow-control device to coil liquid refrigerant tube.
3. Remove sheet metal screw holding bracket clip in place. Screw is located between coil and refrigerant flow-control device.

4. Pull bracket clip out.

5. Remove refrigerant flow-control device assembly.

6. Pull strainer out of coil liquid refrigerant tube and replace with new strainer.

V. CARE AND MAINTENANCE

A. Motor
- Pull bracket clip out.
- Remove refrigerant flow-control device assembly.
- Pull strainer out of coil liquid refrigerant tube and replace with new strainer.

B. Blower Motor and Wheel
- Blower motor and wheel may be cleaned using a vacuum with a soft brush attachment. Remove grease with a mild solvent such as hot water and detergent. Be careful not to disturb balance weights (clips) on blower wheel vanes. Do not drop or bend wheel as balance will be affected.

FG3A SERVICE AND TROUBLESHOOTING

I. SERVICE

A. Motor
- Ball bearing oilers are provided on blower motor. Use electric motor oil or SAE 10 or 20 nondetergent oil. Check motor mount bracket and base bolts. Tighten as required.

B. Blower
- Check ball bearings for wear. Ball bearings are self-aligning and grease packed. Replace as required. Check thrust collars for end play and alignment of wheel. Check blades for accumulation of dirt. Clean as required. Check mounting brackets, base bolts, and isolation material.

C. Pulley and Belts
- Check belt tension and pulley alignment. (See Fig. 38.) Belt tension is adjusted by motor tailpiece bolt. A deflection of about 3/4 in. to 1 in. per foot of span should be obtained by pressing belt firmly. Lock adjusting bolt in position after adjustment is made. Align pulley grooves by locating motor pulley on motor shaft or by moving entire motor along motor mounting bracket. Adjust blower speed by loosening setscrew in outer (moveable) pulley face and moving entire motor along motor mounting bracket. Adjust blower speed by loosening setscrew in outer (moveable) pulley face and turning this face (half or full turns) so that adjusting setscrew is positioned precisely over the flat on pulley hub. Speed is reduced by adjusting pulley faces so they are further apart; speed is increased with faces closer together. Check pulley setscrews and bolts.

D. Cleaning or Replacing Refrigerant Flow-Control Device
- Refer to Fig. 36 and instructions given in FD3A Service and Troubleshooting section above.
II. MAINTENANCE

WARNING: Disconnect electrical power to all circuits before servicing unit. Failure to do so may result in personal injury from electrical shock or moving parts.

WARNING: As with any mechanical equipment, personal injury can result from sharp metal edges. Be careful when removing parts.

A. Return-Air Filter

To clean or replace air filter, remove screws and filter access door. Slide out filter. For washable type filters, clean with hot soapy water. Rinse clean and let dry.

New filters are available from a local distributor. Place filter in slot with filter arrow facing direction of airflow. Replace filter access doors with screws previously removed.

CAUTION: Never operate unit without a filter or with filter access door removed. Damage to blower motor may result.

B. Coil, Drain Pan, and Condensate Drain

CAUTION: Disconnect electrical power before removing any access panels or electrical shock may result.

The coil is easily cleaned when dry. To check or clean coil, remove coil access panel. If coil is coated with dirt or lint, vacuum with a soft brush attachment.

Be careful not to bend fins. If coil is coated with oil or grease, it may be cleaned with mild detergent and water solution. Rinse coil with clean water. Be careful not to splash water on insulation or filter.

Check drain pan and condensate drain at same time cooling coil is checked. Clean drain pan and condensate drain by removing any foreign matter from pan. Check for rust and holes. Flush pan and drain tube with clear water. If drain is restricted, clean with high-pressure water. If this does not work, use a plumber’s snake or similar probe device. Repitch drain pan to promote proper drainage.

II. UNIT FUNCTIONS

A. Transformer

NOTE: Terminals T1, T2 (if used), and T3 are wired to primary or high side of transformer. The 208-v terminal (or red wire if transformer has primary leads) is used on T3 for 208-v applications. The 230-v terminal (or red wire) is used on T3 for 230-v applications. T2 is a dummy terminal.

B. Electric Heat

NOTE: When troubleshooting elements, position thermostat to emergency heat. Wait approximately 12 minutes after all thermostat delays for all elements to come on.

1. When thermostat calls for supplementary heat, a 24-v signal is sent to PCB through W2T. The PCB energizes first stage of electric heat.

2. The first 2 stages come on if W2T and Y are energized at the same time. After each 10 minutes W2T is energized, another stage of electric heat is energized.

3. As W2T is de-energized, electric heat stages down in 8 minute steps with the exception of first step. The first step will be on only half as long as it was prior to W2T de-energizing.

4. When W2T is energized by itself, JW1 is cut, and an outdoor thermostat is used and is open, staging is limited as in Table 10.

5. When both W3 and W2T are energized without JW1 being cut or with outdoor thermostat closed, system operation stages heat up to maximum level if signal is energized for proper amount of time.
6. If only W3 is energized (JW1 is cut), there is no effect on PCB. No heat is energized.

C. Accessories
Terminals AUX+ and AUX- are energized with 24 vdc when fan is energized. The accessory kit KFAIR0101ACR is used to connect an EAC or humidifier.

NOTE: Loads cannot be connected directly to AUX+ and AUX-. Use the specified kit only.

D. Blower
1. Blower On Delay—To optimize comfort, there is a 30-sec blower on delay in heat pump heating mode only.
2. Blower Off Delay—Smart Heat control uses a 60-sec off blower delay, as opposed to the standard 90-sec delay.

III. SMART HEAT OPERATION
A. Cooling
The Smart Heat option controls cooling mode in same manner as conventional heat pumps are controlled. The fan has a 90-sec delay off/on cycle down.

B. Heat Pump Heating
The Smart Heat option does not control heating in the conventional method. The PCB energizes compressor 30 sec before indoor fan is energized. This allows indoor coil to heat up eliminating cold-blow on start-up.

The electric heat is staged-on to allow continuous operation of heat pump and electric resistance heat below balance point (below point where heat pump cannot maintain dwelling temperature without supplemental heat) independent of outdoor thermostats.

Although PCB has provisions for an outdoor thermostat, it is not needed for staging. On cycle down, indoor fan remains on 60 sec to recover heat stored in indoor coil.

C. Defrost
The Smart Heat PCB stages the correct amount of supplemental heat during defrost. If too much heat is added, system stays in defrost for completion of defrost cycle even though thermostat is satisfied. On next cycle, 1 less element is energized during next defrost period.

NOTE: If the signal from thermostat is interrupted (ie., thermostat is satisfied) while unit is in defrost mode, the defrost cycle will be completed before unit shuts down.
D. Troubleshooting Printed-Circuit Board (Diagnostic LED)

The PCB of Smart Heat option heater package contains a microprocessor which controls fan operation, fan speed, outdoor unit, and heater elements. For troubleshooting, a service LED indicates condition of PCB. See Table 11 for LED flash codes.

TABLE 11—LED CODES FOR SMART HEAT PCB

<table>
<thead>
<tr>
<th>FLASH CONDITION</th>
<th>INPUT SIGNALS</th>
<th>SYSTEM OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Light/Flash</td>
<td>—</td>
<td>No Power or Board Failure</td>
</tr>
<tr>
<td>Steady Light</td>
<td>—</td>
<td>Board Failure</td>
</tr>
<tr>
<td>Steady Flash</td>
<td>—</td>
<td>Stand By Condition or Fan Only</td>
</tr>
<tr>
<td>1 Flash</td>
<td>Y only</td>
<td>Heat Pump Only Operating</td>
</tr>
<tr>
<td>2 Flashes</td>
<td>Y and/or W2T</td>
<td>Heat Pump Plus 1 Sequencer</td>
</tr>
<tr>
<td>3 Flashes</td>
<td>Y and/or W2T</td>
<td>Heat Pump Plus 2 Sequencers</td>
</tr>
<tr>
<td>4 Flashes</td>
<td>Y and/or W2T</td>
<td>Heat Pump Plus 3 Sequencers</td>
</tr>
<tr>
<td>5 Flashes</td>
<td>Y, O</td>
<td>Cool Mode</td>
</tr>
<tr>
<td>6 Flashes</td>
<td>Y, W2D, and/or W2T</td>
<td>Defrost Mode</td>
</tr>
<tr>
<td>7 Flashes</td>
<td>W2T</td>
<td>Emergency Heat Mode</td>
</tr>
</tbody>
</table>

IV. ELECTRICAL OPERATING SEQUENCES AND TROUBLESHOOTING

NOTE: Refer to Table 12 for proper input and output voltages. See Fig. 40 for Smart Heat Proper Wiring Diagram.

A. Ready-To-Start

In ready-to-start (standby) mode, LED on board indicates a steady flash.

In this mode, 24-v power should be available at control’s low voltage terminal strip terminals R and C. If 24v is not present across R and C, check the following:

- Is low-voltage fuse on control board good?
- Are line voltage fuses FU1 and FU2 good?
- Is LED on control on steadily or not on at all? Both of these indications signal a possible board failure.

If 208/230-v power is available to control across pins 7 and 9 of 9-pin connector? Is connection to board tight?

B. Continuous Fan

On a call for continuous fan, thermostat provides a 24-v input signal to G terminal on low-voltage terminal strip. Sensing this signal, the microprocessor energizes a relay on control to provide power to high-speed winding of fan motor, at 1. The fan continues to run until fan switch on thermostat is turned off.

During continuous fan operation with no call for heating or cooling, LED indicates a steady flash, the same indication seen when system is in standby.

The call for continuous fan operation signal can be checked by placing voltmeter leads across terminals G and C of control’s low-voltage terminal strip. If 24v is not seen across these terminals, check for the following:

- Is 24v available across R and C? If not, refer to Ready-To-Start section for items to check if 24v is not available.
- Is thermostat fan switch set for continuous operation?

Confirm fan operation. Voltage to operate fan can be confirmed by placing voltmeter leads across terminals F1 and HI on control. The reading should be 208/230v. If 208/230v is not observed, check the following:

- Is 208/230v available at pins 7 and 9 of 9-pin connector? Is connection to board tight?
- Are line voltage fuses FU1 and FU2 good?
- Is fan motor capacitor good?
- Is blower wheel jammed or loose? Are there any other mechanical problems preventing fan operation?

C. Cooling

On a call for cooling, room thermostat provides input signals to control board at terminals Y and O. The O signal is also available to heat pump to energize reversing valve.

When it receives both these signals, the microprocessor responds by providing a 24-v output signal at the Y, terminal. This output signal energizes contactor in heat pump and starts compressor. There is a 3 to 5 sec delay in output of Y, signal.

At the same time, control energizes fan coil’s fan motor on high speed through terminals F1 and HI. The LED indicator on control signals 5 flashes, indicating cooling operation.

The call for cooling signals can be confirmed by placing voltmeter leads across low-voltage terminals Y, O, Y, and C. The reading should be 24v. If 24v is not available, check the following:

- Is 24v available across R and C? See Ready-To-Start section for items to check if 24v is not available.
- Is thermostat function switch set in COOL position with thermostat calling for cooling?

Assuming heat pump has power and is adequately charged, it should be running at this time in cooling mode. Indoor fan should also be running at this time. If indoor fan is not running, refer to Continuous Fan section for items to check.

D. Heating (Compressor Only)

On a call for heat, room thermostat provides an input signal to control board at terminal Y. This signal causes the microprocessor to provide a 24-v output signal at terminal Y, to energize contactor in heat pump. There is a 3 to 5 sec delay in output of Y, signal.

Thirty sec after Y is energized, control energizes fan motor. It may run on high or low speed, depending on its operation in previous cycle.

Compressor operation in current cycle is monitored by the smart control to determine whether a fan speed change is required for enhanced indoor comfort. The LED indicator on control signals 1 flash, indicating compressor operation only with no electric heat.

The call for heat signals can be confirmed by placing voltmeter leads across low-voltage terminals Y, Y, and C. The readings should be 24v. If 24v is not available, check the following:

- Is 24v available across R and C? See Ready-To-Start section for items to check if 24v is not available.
- Is thermostat function switch set in HEAT position with thermostat calling for heat?

Assuming heat pump has power and is adequately charged, it should be running at this time in heating mode. Indoor fan should also be running at this time. If indoor fan is not running, refer to Continuous Fan section for items to check. When room thermostat is satisfied, indoor fan continues to run an additional 60 sec to recover heat remaining in indoor coil.

E. Heating (Compressor and Electric Heat)

If heat pump alone cannot satisfy heat requirements of structure, room thermostat calls for additional heat by way of an input to W2 terminal of control. When this occurs, control begins sequencing on electric heaters by energizing the first sequencer/heat relay. Indoor fan should be running at this time.

If room temperature requirements cannot be met, additional stages of electric heat are energized through the other 2 sequencers/relays, at 2.
The logic of control determines how much and how soon these additional stages are brought on. By observing LED status light, the number of operating stages of electric heat can be determined. The control also varies indoor fan speed depending on number of energized stages of heat. In general, the more stages of electric heat, the higher the fan speed.

There is no hard and fast rule for determining exactly when stages will be energized since microprocessor in the smart control constantly monitors duration of previous heating cycle, setting of room thermostat, and number of stages of heat needed in previous cycle to satisfy room thermostat. Rather than try to determine what should be operating when, service technicians should check LED status light to see how many stages of electric heat are energized at a given time and confirm operation of sequencer/relay using a voltmeter. If a quick check of all stages is desired, set room thermostat as high as it will go. With a constant signal on W2T terminal, sequencers/relays energize every 10 minutes until all heaters are on.

The previous paragraphs described how to check for low-voltage inputs to control by placing voltmeter leads across low-voltage terminal strip and checking for 24v. The call for electric heat can be confirmed by placing voltmeter leads across W2T and C.

To check for operation of sequencers/relays, check directly across appropriate coil for 24 volts DC.

NOTE: All sequencer/relay coils are powered by 24 volts DC. This voltage is generated internally by the smart control.

In this example, sequencer/relay 1 is being checked. The procedure is the same for all other sequencers/relays. If 24 volts DC is not observed, check the following:

- Is room thermostat calling for electric heat? This can be confirmed by checking for 24 volts AC between low-voltage terminal strip terminals W2T and C.

F. Checking Sequencer Operation

To check for operation of power circuit of sequencer/relay, place voltmeter leads across sequencer/relay terminal 4 of sequencer/relay 1 and terminal 4 of limit switch 3. The reading should be 208/230v, and heater should be energized. If 208/230v is not observed at terminals specified, check the following:

- Are fuses FU3 and FU4 good?
- Is limit switch LS3 open? If so, check fan coil air filter or air distribution system for blocking or restriction that might reduce airflow and cause limit switch to open.

Operation of heaters can be confirmed further by using a clamp-on ammeter in circuit shown to verify current is flowing through heaters. Amperage readings will depend on size of heater. The procedure for checking other sequencers/relays in system is identical to that just described.

G. Emergency Heat

Emergency heat mode requires that room thermostat be placed in EMERGENCY HEAT position. This locks out and prevents operation of heat pump outdoor unit. In this mode, heat is provided exclusively by electrical heaters in fan coil.

In this mode, room thermostat, at 1, provides an emergency heat input signal to smart control at terminal W2T. If jumper JW1, at 2, has not been cut and an outdoor thermostat installed to control electric heat stages, that same input signal is applied to terminal W3. For this example, assume that jumper JW1 has not been cut.

TABLE 12—TROUBLESHOOTING VOLTAGE READINGS AND TEST POINTS

<table>
<thead>
<tr>
<th>INPUT VOLTAGES</th>
<th>LOCATION</th>
<th>NORMAL READING</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 and L2</td>
<td>208/230 vac</td>
<td>Main power supply input to fan coil</td>
<td></td>
</tr>
<tr>
<td>L3 and L4</td>
<td>208/230 vac</td>
<td>Power to electric heaters</td>
<td></td>
</tr>
<tr>
<td>9-pin connector 7 and 9</td>
<td>208/230 vac</td>
<td>Power to smart control</td>
<td></td>
</tr>
<tr>
<td>T1 and T3</td>
<td>208/230 vac</td>
<td>Power to transformer</td>
<td></td>
</tr>
<tr>
<td>SEC1 and SEC2</td>
<td>24 vac</td>
<td>Power from transformer secondary</td>
<td></td>
</tr>
<tr>
<td>R and C</td>
<td>24 vac</td>
<td>Power from transformer secondary</td>
<td></td>
</tr>
<tr>
<td>G and C</td>
<td>24 vac</td>
<td>Call for continuous fan signal from room thermostat</td>
<td></td>
</tr>
<tr>
<td>Y and C</td>
<td>24 vac</td>
<td>Call for heat/cool signal from room thermostat</td>
<td></td>
</tr>
<tr>
<td>O and C</td>
<td>24 vac</td>
<td>Signal to energize reversing valve from room thermostat (cooling). Also present during defrost.</td>
<td></td>
</tr>
<tr>
<td>W2T and C</td>
<td>24 vac</td>
<td>Call for electric heat from room thermostat</td>
<td></td>
</tr>
<tr>
<td>W2D and C</td>
<td>24 vac</td>
<td>Defrost initiation signal from heat pump</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTPUT VOLTAGES</th>
<th>LOCATION</th>
<th>NORMAL READING</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI and F1</td>
<td>208/230 vac</td>
<td>Power to blower motor (high speed)</td>
<td></td>
</tr>
<tr>
<td>LO and F1</td>
<td>208/230 vac</td>
<td>Power to blower motor (low speed)</td>
<td></td>
</tr>
<tr>
<td>Y and C 1, 2</td>
<td>24 vac</td>
<td>Power to energize contactor in heat pump (heat and cool modes)</td>
<td></td>
</tr>
<tr>
<td>9-pin connector 1 and 4</td>
<td>24 vdc</td>
<td>Power to energize SEQ 1</td>
<td></td>
</tr>
<tr>
<td>9-pin connector 2 and 4</td>
<td>24 vdc</td>
<td>Power to energize SEQ 2</td>
<td></td>
</tr>
<tr>
<td>9-pin connector 3 and 4</td>
<td>24 vdc</td>
<td>Power to energize SEQ 3</td>
<td></td>
</tr>
</tbody>
</table>

vac—volts AC
vdc—volts DC
Eventually, the total number of heaters is cycled on. In emergency heat mode, LED indicator signals 7 flashes.

The amount of emergency heat available depends on whether jumper JW1 is cut and the number of heating elements. Table 13 illustrates results under various conditions. The heaters cycle on two elements initially and an additional element every 5 minutes until maximum level is reached.

TABLE 13—EFFECT OF JW1 ON EMERGENCY HEAT

<table>
<thead>
<tr>
<th>JW1 cut*</th>
<th>4 elements</th>
<th>3 elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50%</td>
<td>66.7%</td>
</tr>
<tr>
<td>JW1 not cut</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

* Outdoor thermostat opens

With JW1 cut, an outdoor thermostat (if closed) could cycle on additional heaters and system would perform as if JW1 was not cut. In effect, closed outdoor thermostat replaces cut jumper.

H. Defrost

In defrost mode, LED indicator signals 6 flashes. Defrost is initiated by heat pump and is signalled to smart control by an input to W2D terminal. During defrost, outdoor unit switches to cooling mode, making it necessary to cycle on electric heaters to temper indoor air.

If electric heaters were not energized prior to defrost, smart control energizes sufficient elements to temper air. If heaters were energized prior to defrost, additional heaters will be cycled on to provide additional heat.

A defrost initiation signal can be confirmed by attaching voltmeter leads across low-voltage terminals W2D and C. If 24v is not observed, check the following:

- Is 24v available across R and C? See Ready-To-Start section for items to check if 24v is not available.
- Is there continuity in thermostat leads between heat pump and smart control?
- Is defrost control in heat pump operating properly?

PURON® (R-410A) QUICK REFERENCE GUIDE FOR INSTALLERS AND TECHNICIANS

- Puron (R-410A) refrigerant operates at 50-70 percent higher pressures than R-22. Be sure that servicing equipment and replacement components are designed to operate with Puron (R-410A).
- Puron (R-410A) refrigerant cylinders are rose colored.
- Recovery cylinder service pressure rating must be 400 psig, DOT 4BA400 or DOT BW400.
- Puron (R-410A) systems should be charged with liquid refrigerant.
- Use a commercial type metering device in the manifold hose.
- Manifold sets should be at least 750 psig high-side and 200 psig low-side with 520 psig low-side retard.
- Use hoses with 750 psig service pressure rating.
- Leak detectors should be designed to detect HFC refrigerant.
- Puron (R-410A), as other HFC’s, is only compatible with POE oils.
- Vacuum pumps will not remove moisture from oil.
- Do not use liquid-line filter driers with rated working pressures less than 600 psig.
- Do not install a suction-line filter drier in liquid line.
- POE oils absorb moisture rapidly. Do not expose oil to atmosphere.
- Wrap all filter driers and service valves with wet cloth when brazing.
- A liquid-line filter drier is required on every unit.
- Indoor unit is equipped with a TXV. Replacement TXV must be designed for Puron (R-410A).
- Do not use an R-22 TXV.
- Never open system to atmosphere while it is under a vacuum.
- When system must be opened for service, break vacuum with dry nitrogen and replace filter driers.
- Do not vent Puron (R-410A) into the atmosphere.
- Do not use capillary tube indoor coils.
- Observe all **warnings**, **cautions** and **bold** text.
Fig. 40—Smart Heat Typical Wiring Diagram (Motor Speed at 20kw Shown)
Packaged Service Training programs are an excellent way to increase your knowledge of the equipment discussed in this manual, including:
- Unit Familiarization
- Installation Overview
- Maintenance
- Operating Sequence

A large selection of product, theory, and skills programs is available, using popular video-based formats and materials. All include video and/or slides, plus companion book.

Classroom Service Training plus "hands-on" the products in our labs can mean increased confidence that really pays dividends in faster troubleshooting, fewer callbacks. Course descriptions and schedules are in our catalog.

CALL FOR FREE CATALOG 1-800-962-9212

[] Packaged Service Training [] Classroom Service Training