SAFETY CONSIDERATIONS
Installation, service, and repair of these units should be attempted only by trained service technicians familiar with standard service instruction and training material.

All equipment should be installed in accordance with accepted practices and unit Installation Instructions, and in compliance with all national and local codes. Power should be turned off when servicing or repairing electrical components. Extreme caution should be observed when troubleshooting electrical components with power on. Observe all warning notices posted on equipment and in instructions or manuals.

R-410A systems operate at higher pressures than standard R-22 systems. Do not use R-22 service equipment or components on R-410A equipment.

Refrigeration system contains refrigerant under pressure. Extreme caution should be observed when handling refrigerants. Wear safety glasses and gloves to prevent personal injury. During normal system operation, some components are hot and can cause burns. Rotating fan blades can cause personal injury. Appropriate safety considerations are posted throughout this manual where potentially dangerous techniques are addressed.

INTRODUCTION
Section 1 of this Application Guideline and Service Manual provides the required system information necessary to install the R-410A air conditioner in all applications. Section 2 provides the necessary information to service, repair, and maintain the family of R-410A air conditioners. Section 3 of this manual is an appendix. Use table of contents to locate desired topic.

TABLE OF CONTENTS

SECTION 1—APPLICATION GUIDELINE  .................................2-7

- INSTALLATION GUIDELINE
  Residential New Construction
  Add-On Replacement (Retrofit)
  Desert or Seacoast

- REQUIRED FIELD-INSTALLED ACCESSORIES

- ACCESSORY DESCRIPTIONS

- LOW-AMBIENT GUIDELINE

- LONG-LINE GUIDELINE
  Interconnecting Tubing
  Metering Device
  Tubing Configuration
  Charging Information

SECTION 2—SERVICE MANUAL  .................................8-22

- UNIT IDENTIFICATION
  Model Number Nomenclature
  Serial Number Nomenclature

- CABINET ASSEMBLY  .................................8
  Remove Top Cover
  Remove Fan Motor Assembly
  Information Plate

- ELECTRICAL  .................................9
  Aluminum Wire
  Contactor
  Capacitor
  PTC Devices
  Cycle Protector
  Crankcase Heater
  Time-Delay Relay
  Pressure Switches
  Fan Motor
  Compressor Plug
  Low-Voltage Terminals

- COPELAND SCROLL COMPRESSOR  .................................13
  Mechanical Failure
  Electrical Failure

- REFRIGERATION SYSTEM  .................................15
  Refrigerant
  Compressor Oil
  Brazing
  Service Valves and Pumpdown
  Filter Drier
  Accumulator
  AccuRater®
  Thermostatic Expansion Valve (TXV)

- REFRIGERATION SYSTEM REPAIR  .................................19
  Leak Detection
  Coil Removal
  Compressor Removal and Replacement
  System Clean-Up After Burnout
  Evacuation
  R-410A Refrigerant Charging
  Checking Charge

- CARE AND MAINTENANCE  .................................21
  Cleaning
  Desert and Seacoast Locations

SECTION 3—APPENDIX  .................................23-26

- PRESSURE vs. TEMPERATURE CHART FOR R-410A
- SUBCOOLING CHARGING TABLE
- TROUBLESHOOTING CHART
- QUICK REFERENCE GUIDE

Manufacturer reserves the right to discontinue, or change at any time, specifications or designs without notice and without incurring obligations.
SECTION 1—APPLICATION GUIDELINE

INSTALLATION GUIDELINE
RESIDENTIAL NEW CONSTRUCTION
Specifications for this unit in the residential new construction market require the outdoor unit, indoor unit, refrigerant tubing sets, metering device, and filter drier listed in Product Data Digest (PDD). There can be no deviation. Consult unit Installation Instructions for detailed information.

ADD-ON REPLACEMENT (RETROFIT)
Specifications for this unit in the add-on replacement/retrofit market require change-out of outdoor unit, metering device, and all capillary tube coils. Change-out of indoor coil is recommended. There can be no deviation.

1. If system is being replaced due to compressor electrical failure, assume acid is in system. If system is being replaced for any other reason, use approved acid test kit to determine acid level. If even low levels of acid are detected install factory approved, 100% activated alumina suction-line filter drier in addition to the factory supplied liquid-line filter drier.

2. Drain oil from low points or traps in suction-line and evaporator if they were not replaced.

3. Change-out indoor coil or verify existing coil is listed in the PDD.

4. Change-out metering device to factory supplied device specifically designed for R-410A.

5. Replace outdoor unit with R-410A outdoor unit.

6. Install factory-supplied liquid-line filter drier.

WARNING
Never install a suction-line filter drier in the liquid-line of an R-410A system. Failure to follow this warning can cause a fire, personal injury, or death.

7. If suction-line filter drier was installed for system clean up: operate system for 10 hr. Monitor pressure drop across drier. If pressure drop exceeds 3 psig replace suction-line and liquid-line filter driers. Be sure to purge system with dry nitrogen when replacing filter driers. Continue to monitor pressure drop across suction-line filter drier. After 10 hr of run time, remove suction-line filter drier and replace liquid-line filter drier. **Never leave suction-line filter drier in system longer than 72 hr (actual time).**

8. Charge system. (See unit information plate.)

SEACOAST
Installation of these units in seacoast locations requires the use of a coastal filter. (See section on cleaning.)

<table>
<thead>
<tr>
<th>ACCESSORY DESCRIPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW-AMBIENT CONTROLLER — Low-ambient controller is a cycle control device activated by a temperature sensor mounted on a header tube of the outdoor coil. It is designed to cycle the outdoor fan motor in order to maintain condensing temperature within normal operating limits (approximately 130° to 110°F high,</td>
</tr>
</tbody>
</table>

Table 1—Required Field-Installed Accessories

<table>
<thead>
<tr>
<th>ACCESSORY</th>
<th>ORDERING NUMBER</th>
<th>REQUIRED FOR LOW-AMBIENT APPLICATION</th>
<th>REQUIRED FOR LONG-LINE APPLICATION†</th>
<th>REQUIRED FOR SEA-COAST APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crankcase Heater — All Sizes</td>
<td>KAACH1201AAA</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Evaporator Freeze Thermostat — All Sizes</td>
<td>KAAFT0101AAA</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Winter Start Control — All Sizes</td>
<td>KAAWS0101AAA</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Compressor Start Assist (PTC) OR Capacitor/Relay — All Sizes</td>
<td>KAACS0201PTC</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>KSAHS0401AAA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Ambient Controller OR Motor Master® — All Sizes</td>
<td>P251-0083(RCD)</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>32LT660004(RCD)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Baffle Fig. 1 — All Sizes</td>
<td>N/A</td>
<td>SEE LOW-AMBIENT INSTRUCTIONS</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Coastal Filter — All Sizes</td>
<td>KAACF0201MED</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Support Feet — All Sizes</td>
<td>KSASF0101AAA</td>
<td>RECOMMENDED</td>
<td>NO</td>
<td>RECOMMENDED</td>
</tr>
</tbody>
</table>

* Fan motor with ball bearings required.
† Liquid-line solenoid may be required. (See Fig. 4.)
70° to 50°F low). The control will maintain working head pressure at low-ambient temperatures down to -20°F when properly installed.

COMPRESSOR CRANKCASE HEATER — An electric heater which mounts to base of compressor to keep lubricant warm during off cycles. Improves compressor lubrication on restart and minimizes chance of refrigerant slugging. May or may not include a thermostat control.

EVAPORATOR FREEZE THERMOSTAT — An SPST temperature activated switch stops unit operation when evaporator reaches freeze-up conditions.

WINTER START CONTROL — An SPST delay relay which bypasses the low-pressure switch for approximately 3 minutes to permit start up for cooling operation under low-load conditions.

WIND BAFFLE — A field-fabricated sheet metal cover used to stop prevailing winds or where outdoor ambient temperature is less than 0°F during unit operation.

COMPRESSOR START ASSIST (PTC) — Solid-state electrical device which gives a “soft” boost to the compressor at each start.

MOTOR MASTER® CONTROL — A fan speed control device activated by a temperature sensor. Designed to control condenser fan motor speed in response to the saturated, condensing temperature during operation in cooling mode only. For outdoor temperature down to -20°F, it maintains condensing temperature at 100°F ± 10°F.

COMPRESSOR START ASSIST (CAPACITOR/RELAY) — Start capacitor and start relay gives "hard" boost to compressor motor at each start.

LIQUID-LINE SOLENOID — An electrically operated shut-off valve to be installed at outdoor or indoor unit (depending on tubing configuration) and which stops and starts refrigerant liquid flow in response to compressor operation. Maintains a column of refrigerant liquid ready for action at next compressor operation cycle.

COASTAL FILTER — A mesh screen inserted under top cover and inside base pan to protect condenser coil from salt damage without restricting airflow.

SUPPORT FEET — Four stick-on plastic feet which raise unit 4 in. above mounting pad. This allows sand, dirt, and other debris to be flushed from unit base; minimizes corrosion.

LOW-AMBIENT GUIDELINE
The recommended minimum operating temperature for this system is 55°F outdoor ambient. R-410A air conditioner may be applied at ambient temperatures below 55°F when required accessories are installed. (See Table 1 and Fig. 1.)

LONG-LINE GUIDELINE
This guideline provides the required system changes for the R-410A air conditioner having piping requirements greater than 50 ft or installations where indoor unit is located above or below outdoor unit, by more than 8 ft. This guide is intended to cover applications outside the standard Installation Instructions.

INTERCONNECTING TUBING
Table 2 lists the recommended interconnecting vapor-line diameters for equivalent total line lengths. The R-410A air conditioner installed in long-line applications must use only 3/8-in. liquid lines. Equivalent line lengths equal the linear length (measured) of the interconnecting vapor tubing plus losses due to elbows. (See Table 3 and Fig. 3.) Liquid lines larger than 3/8-in. Od will greatly increase the charge quantity of the system. Excessive charge will increase risk of migration and compressor damage. Table 2 provides estimated percentage of nominal cooling capacity losses based on the standard recommended vapor line size versus what is selected for the long-line application.

Refer to the outdoor unit PDD to find the standard recommended vapor-line diameter. Calculate the linear length of vapor tube required, adding any losses for the total number of elbows for the application. (See Table 3.) Using this equivalent length select the desired vapor-line size from Table 2. Subtract nominal percentage loss from outdoor unit presale literature Detailed Cooling Capacities for given indoor/outdoor combination. Reference all notes of Table 2.

NOTE: When specifying the vapor-line insulation, be aware of the following standard practice.

Tubing kits should meet the following recommendations to minimize losses through the insulation: 5/8-in. and 3/4-in. tubing kits should be supplied with 3/8-in. insulation; 7/8-in. and 1-1/8-in. tubing kits should be supplied with 1/2-in. insulation. For minimal capacity loss in long-line application, 1/2-in. insulation should be specified.

NOTE: Special consideration must be given to isolating interconnecting tubing from building structure. Isolate tubing so that vibration or noise is not transmitted into the structure. (See Fig. 2.)

METERING DEVICE
An ACCURATER piston or an R-410A TXV can be installed for long-line applications.

A liquid-line solenoid valve can be used for certain long line applications. (See Fig. 4.) The solenoid valve has a flow arrow stamped on the body of the valve. When solenoid is closed (not energized) and pressure is applied in the direction of the flow arrow, complete shutoff will occur.

If a piston is used and total equivalent horizontal length is 100 ft or longer, indoor piston must be increased 1 full size. No piston changes are required for the allowable 30 ft vertical elevation.

A TXV may be used instead of a piston for an indoor metering device. When sizing an accessory TXV, refer to unit presale literature.

TUBING CONFIGURATION
Fig. 4 through 6 will detail the proper installation of equipment and provide applications where accessories may be required. Reference all notes of appropriate fig.

CHARGING INFORMATION
Use superheat charging method for ACCURATER pistons. Use subcooling charging method for TXV applications. The standard charging methods can be found in refrigerant system charging section of the Service Manual. Since total system charge is increased for long-line application, it is necessary to calculate additional refrigerant charge. The rating plate charge of a given outdoor unit is for a standard application of 15 ft of interconnecting tubing. For line lengths greater than 15 ft, add 0.50 oz of refrigerant per foot of additional line length. The rating plate charge can be found on outdoor unit rating plate or in outdoor unit presale literature. Long-line applications do not require additional oil charge.

NOTE: Charging units with long refrigerant lines must be done carefully to avoid over charging. Pressure and temperature changes are slower with long lines. Adding or removing charge must be done slowly to allow time for system to stabilize.
### DIMENSIONS

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>AA Unit Height</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>TECH2000</strong></td>
<td></td>
</tr>
<tr>
<td>Small 27-1/2</td>
<td>23 13/16</td>
<td>17</td>
<td>25 1/4</td>
<td>10 3/8</td>
<td>19 3/4</td>
<td>20 1/2</td>
<td>34</td>
<td>19 11/16</td>
<td>20 7/16</td>
<td>19 5/8</td>
<td>0</td>
<td>0</td>
<td>6 1/8</td>
</tr>
<tr>
<td>27 13/16</td>
<td>17</td>
<td>25 1/4</td>
<td>10 3/8</td>
<td>23 3/4</td>
<td>24 1/2</td>
<td>34</td>
<td>23 11/16</td>
<td>24 7/16</td>
<td>23 5/8</td>
<td>0</td>
<td>11 7/8</td>
<td>6 1/8</td>
<td></td>
</tr>
<tr>
<td>33 13/16</td>
<td>17</td>
<td>25 1/4</td>
<td>10 3/8</td>
<td>29 3/4</td>
<td>30 1/2</td>
<td>34</td>
<td>29 11/16</td>
<td>30 7/16</td>
<td>29 5/8</td>
<td>0</td>
<td>14 7/8</td>
<td>6 1/8</td>
<td></td>
</tr>
<tr>
<td><strong>InViroFlow Top</strong></td>
<td></td>
</tr>
<tr>
<td>33 13/16</td>
<td>21</td>
<td>32</td>
<td>11 3/16</td>
<td>29 3/4</td>
<td>30 1/2</td>
<td>42</td>
<td>29 11/16</td>
<td>30 7/16</td>
<td>29 5/8</td>
<td>19 11/16</td>
<td>14 7/8</td>
<td>6 11/16</td>
<td></td>
</tr>
<tr>
<td>Large 45</td>
<td>33 13/16</td>
<td>25 3/16</td>
<td>42</td>
<td>12 15/16</td>
<td>29 3/4</td>
<td>30 1/2</td>
<td>50 7/16</td>
<td>29 11/16</td>
<td>30 7/16</td>
<td>29 5/8</td>
<td>22 11/16</td>
<td>14 7/8</td>
<td>7 1/16</td>
</tr>
<tr>
<td>39 13/16</td>
<td>25 3/16</td>
<td>42</td>
<td>12 15/16</td>
<td>35 3/4</td>
<td>36 1/2</td>
<td>50 7/16</td>
<td>35 11/16</td>
<td>36 7/16</td>
<td>35 5/8</td>
<td>22 11/16</td>
<td>17 7/8</td>
<td>7 1/16</td>
<td></td>
</tr>
</tbody>
</table>

**Fig. 1—Wind Baffle Construction/Dimensions**
**Fig. 2—Tubing Support**

**Fig. 3—Tube Bend Losses**

**Table 2—Estimated Percentage of Nominal Cooling Capacity Losses**

<table>
<thead>
<tr>
<th>UNIT NOMINAL SIZE (BTU)</th>
<th>STANDARD VAPOR LINE† (IN.)</th>
<th>LONG-LINE VAPOR LINE‡ (IN.)</th>
<th>PERCENTAGE OF COOLING CAPACITY LOSS (BTU) VERSUS EQUIVALENT LENGTH*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>25 Ft</td>
</tr>
<tr>
<td>24,000</td>
<td>5/8</td>
<td>5/8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>3/4</td>
<td>0</td>
</tr>
<tr>
<td>30,000</td>
<td>3/4</td>
<td>5/8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>3/4</td>
<td>0</td>
</tr>
<tr>
<td>36,000</td>
<td>3/4</td>
<td>5/8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>3/4</td>
<td>0</td>
</tr>
<tr>
<td>42,000</td>
<td>7/8</td>
<td>3/4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7/8</td>
<td>7/8</td>
<td>0</td>
</tr>
<tr>
<td>48,000</td>
<td>7/8</td>
<td>1-1/8</td>
<td>0</td>
</tr>
<tr>
<td>60,000</td>
<td>1-1/8</td>
<td>3/4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7/8</td>
<td>7/8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1-1/8</td>
<td>1-1/8</td>
<td>0</td>
</tr>
</tbody>
</table>

*Standard vapor line diameter required per outdoor unit presale literature.
†Vapor line diameter that may be selected for a long-line application. If smaller vapor lines are selected but not specified within the table, large capacity losses will occur and defrost capacities will be reduced. If larger vapor lines are selected but not specified within the table, refrigerant oil return will be impaired due to velocity losses.
‡The estimated percentage of cooling capacity that must be subtracted from Detailed Cooling Capacities specified in outdoor unit presale literature for any given indoor/outdoor combination.

**Table 3—Fitting Losses in Equivalent Ft**

<table>
<thead>
<tr>
<th>TUBE SIZE OD (IN.)</th>
<th>90° STD FIG. 3-A</th>
<th>90° L.R. FIG. 3-B</th>
<th>45° STD FIG. 3-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8</td>
<td>1.6</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>3/4</td>
<td>1.8</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>7/8</td>
<td>2.0</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>1-1/8</td>
<td>2.6</td>
<td>1.7</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Application: Air conditioner installed in horizontal configuration.

- A hard shut-off TXV or liquid-line solenoid must be installed at indoor unit.
- A crankcase heater must be installed on compressor.
- Vapor line should slope toward indoor unit.
- The above requirements provide refrigerant migration protection during off-cycle due to temperature or slight elevation differences between indoor and outdoor units.
- Maximum equivalent line length is 175 ft between indoor and outdoor units.

Fig. 4—Units Installed in a Horizontal Configuration

Application: Air conditioner installed below indoor unit.

- A crankcase heater must be installed on compressor.
- An inverted vapor-line trap must be installed at indoor unit. The top peak of trap must be greater than height of indoor coil.
- The above requirements provide protection against condensed refrigerant collecting in the vapor line.
- Maximum elevation between units is 30 ft. Maximum equivalent total line length is 175 ft.

Fig. 5—Indoor Unit Above Outdoor Unit
Application: Air conditioner installed above indoor unit.

- A crankcase heater must be installed on compressor.
- The above requirements provide protection against refrigerant migration to compressor when outdoor temperature is lower than indoor temperature.
- Maximum elevation between units is 30 ft. Maximum equivalent total line length is 175 ft.

**Fig. 6—Indoor Unit Below Outdoor Unit**

**SECTION 2—SERVICE MANUAL**

**Fig. 7—Callouts for R-410A Air Conditioner**
Improper installation, adjustment, alteration, service, maintenance, or use can cause explosion, fire, electrical shock, or other conditions which may cause personal injury, death, or property damage. Consult a qualified installer, service agency or your distributor or branch for information or assistance. The qualified installer or agency must use factory-authorized kits or accessories when modifying this product.

Troubleshooting Chart for the R-410A Air Conditioner is provided in appendix at back of this manual. It will enable the service technician to use a systematic approach to locating the cause of a problem and correcting system malfunctions.

UNIT IDENTIFICATION
This section explains how to obtain model and serial number from unit rating plate. These numbers are needed to service and repair the R-410A air conditioner.

MODEL NUMBER NOMENCLATURE
Model number is found on unit rating plate. (See Fig. 7 and 8.)

SERIAL NUMBER NOMENCLATURE
Serial number is found on unit rating plate. (See Fig. 7 and 9.)

CABINET ASSEMBLY
Certain maintenance routines and repairs require removal of cabinet panels. (See Fig. 7.)

REMOVE TOP COVER
1. Turn off all power to outdoor and indoor units.
2. Remove access panel.
3. Remove information plate.
4. Disconnect fan motor wires and cut wire ties. Remove wires from control box. Refer to unit wiring label.
5. Remove screws holding top cover to coil grille and corner posts.
6. Lift top cover from unit.
7. Reverse sequence for reassembly.

REMOVE FAN MOTOR ASSEMBLY
1. Perform items 1 through 6 from above.
2. Remove nuts securing fan motor to top cover.
3. Remove motor and fan blade assembly.
4. Reverse sequence for reassembly.
5. Prior to applying power, check that fan rotates freely.

INFORMATION PLATE
The information plate is secured to front of control box and provides the control box cover. (See Fig. 10.) This plate also provides a surface to attach the wiring schematic, superheat charging tables with instructions, and warning labels. The plate has 2 tabs on top edge that are bent down at slightly more than 90°. When information plate is removed, these tabs can be inserted into 2 mating slots in bottom front edge of control box and plate will hang down forming a lower front panel. (See Fig. 11.) This is convenient when access to controls is required while unit is operating. The information plate on small size casing completely covers opening below control box. On larger models information plate may not cover entire opening. In this instance, top cover can be removed and placed on its side to cover additional space.

---

**Model Number Nomenclature**

<table>
<thead>
<tr>
<th>Electric Air Conditioner</th>
<th>Nominal Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>024 – 24,000 Btuh</td>
</tr>
<tr>
<td></td>
<td>030 – 30,000 Btuh</td>
</tr>
<tr>
<td></td>
<td>036 – 36,000 Btuh</td>
</tr>
</tbody>
</table>

**Serial Number Nomenclature**

<table>
<thead>
<tr>
<th>Week of Manufacture</th>
<th>Year of Manufacture</th>
<th>Manufacturing Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>96</td>
<td>E</td>
</tr>
</tbody>
</table>

Fig. 8—Model Number Nomenclature

<table>
<thead>
<tr>
<th>Week of Manufacture</th>
<th>Year of Manufacture</th>
<th>Manufacturing Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>96</td>
<td>E</td>
</tr>
</tbody>
</table>

Fig. 9—Serial Number Nomenclature
ELECTRICAL

⚠️ WARNING

Exercise extreme caution when working on any electrical components. Shut off all power to system prior to troubleshooting. Some troubleshooting techniques require power to remain on. In these instances, exercise extreme caution to avoid danger of electrical shock. ONLY TRAINED SERVICE PERSONNEL SHOULD PERFORM ELECTRICAL TROUBLESHOOTING. Failure to follow this warning can cause a fire, personal injury, or death.

ALUMINUM WIRE

⚠️ CAUTION

Aluminum wire may be used in the branch circuit (such as the circuit between the main and unit disconnect), but only copper wire may be used between the unit disconnect and the unit.

Whenever aluminum wire is used in branch circuit wiring with this unit, adhere to the following recommendations.
Connections must be made in accordance with the National Electrical Code (NEC), using connectors approved for aluminum wire. The connectors must be UL approved (marked Al/Cu with the UL symbol) for the application and wire size. The wire size selected must have a current capacity not less than that of the copper wire specified, and must not create a voltage drop between service panel and unit in excess of 2 percent of unit rated voltage. To prepare wire before installing the connector, all aluminum wire must be "brush-scratched" and coated with a corrosion inhibitor such as Pentrox A. When it is suspected that connection will be exposed to moisture, it is very important to cover entire connection completely to prevent an electrochemical action that will cause connection to fail very quickly. Do not reduce effective size of wire, such as cutting off strands so that wire will fit a connector. Proper size connectors should be used. Check all factory and field electrical connections for tightness. This should also be done after unit has reached operating temperatures, especially if aluminum conductors are used.

CONTACTOR

The contactor provides a means of applying power to unit using low voltage (24v) from transformer in order to power contactor coil. (See Fig. 12.) Depending on unit model, you may encounter single- or double-pole contactors to break power. Exercise extreme caution when troubleshooting as 1 side of line may be electrically energized.

4. With high-voltage power off and contacts pulled in, check for continuity across contacts with ohmmeter. A very low or 0 resistance should be read. Higher readings could indicate burned or pitted contacts which may cause future failures.

CAPACITOR

**WARNING**

Capacitors can store electrical energy when power is off. Electrical shock can result if you touch the capacitor terminals and discharge the stored energy. Exercise extreme caution when working near capacitors. With power off, discharge stored energy by shorting across the capacitor terminals with a 15,000-ohm, 2-watt resistor. Failure to follow this warning can cause a fire, personal injury, or death.

**NOTE:** If bleed resistor is wired across start capacitor, it must be disconnected to avoid erroneous readings when ohmmeter is applied across capacitor. (See Fig. 13.)

![Fig. 12—Contactor](A88350)

![Fig. 13—Capacitor](A94006)

**WARNING**

Always check capacitors with power off. Attempting to troubleshoot a capacitor with power on can be dangerous. Defective capacitors may explode when power is applied. Insulating fluid inside is combustible and may ignite, causing burns. Failure to follow this warning can cause a fire, personal injury, or death.

Capacitors are used as a phase-shifting device to aid in starting certain single-phase motors. Check capacitors as follows.

1. With power off, discharge capacitors as outlined above. Disconnect capacitor from circuit. Put ohmmeter on R X 10k scale. Using ohmmeter, check each terminal to ground (use capacitor case). Discard any capacitor which measures 1/2 scale deflection or less. Place ohmmeter leads across capacitor and place on R X 10k scale. Meter should jump to a low resistance value and slowly climb to higher value. Failure of meter to do this indicates an open capacitor. If resistance stays at 0 or a low value, capacitor is internally shorted.

2. Capacitance testers are available which will read value of capacitor. If value is not within ± 10 percent value stated on capacitor, it should be replaced. If capacitor is not open or shorted, the capacitance value is calculated by measuring voltage across capacitor and current it draws.

The contactor coil is powered by 24vac. If contactor does not operate:

1. With power off, check whether contacts are free to move. Check for severe burning or arcing on contact points.

2. With power off, use ohmmeter to check for continuity of coil. Disconnect leads before checking. A low resistance reading is normal. Do not look for a specific value, as different part numbers will have different resistance values.

3. Reconnect leads and apply low-voltage power to contactor coil. This may be done by leaving high-voltage power to outdoor unit off and turning thermostat to cooling. Check voltage at coil with voltmeter. Reading should be between 20v and 30v. Contactor should pull in if voltage is correct and coil is good. If contactor does not pull in, replace contactor.
Exercise extreme caution when taking readings while power is on. Electrical shock can cause personal injury or death.

Use following formula to calculate capacitance:
\[ \text{Capacitance (mfd)} = \frac{2650 \times \text{amps}}{\text{volts}} \]

1. Remove any capacitor that shows signs of bulging, dents, or leaking. Do not apply power to a defective capacitor as it may explode.

PTC DEVICES

Sometimes under adverse conditions, a standard run capacitor in a system is inadequate to start compressor. In these instances, a start assist device is used to provide an extra starting boost to compressor motor. This device is called a positive temperature coefficient (PTC) or thermistor. (See Fig. 14.) It is a resistor wired in parallel with the run capacitor. As current flows through the PTC at start-up, it heats up. As PTC heats up, its resistance increases greatly until it effectively lowers the current through itself to an extremely low value. This, in effect, removes the PTC from the circuit.

After system shutdown, resistor cools and resistance value returns to normal until next time system starts. Thermistor device is adequate for most conditions, however, in systems where off cycle is short, device cannot fully cool and becomes less effective as a start device. It is an easy device to troubleshoot. Shut off all power to system.

Check thermistor with ohmmeter as described below. Shut off all power to unit. Remove PTC from unit. Wait at least 10 minutes for PTC to cool to ambient temperature.

Measure resistance of PTC with ohmmeter as shown in Fig. 14. The cold resistance (RT) of any PTC device should be approximately 100-180 percent of device ohm rating.

12.5-ohm PTC = 12.5-22.5 ohm resistance - beige color

If PTC resistance is appreciably less than rating or more than 200 percent higher than rating, device is defective.

CYCLE PROTECTOR

Solid-state cycle protector protects unit compressor by preventing short cycling. After a system shutdown, cycle protector provides for a 5 ± 2-minute delay before compressor restarts. On normal start-up, a 5-minute delay occurs before thermostat closes. After thermostat closes, cycle protector device provides a 3-sec delay. (See Fig. 15, 16, and 17.)

Cycle protector is simple to troubleshoot. Only a voltmeter capable of reading 24v is needed. Device is in control circuit, therefore, troubleshooting is safe with control power (24v) on and high-voltage power off.

With high-voltage power off, attach voltmeter leads across T1 and T3, and set thermostat so that Y terminal is energized. Make sure all protective devices in series with Y terminal are closed.Voltmeter should read 24v across T1 and T3. With 24v still applied, move voltmeter leads to T2 and T3. After 5 ± 2 minutes, voltmeter should read 24v, indicating control is functioning normally. If no time delay is encountered or device never times out, change control.

CRANKCASE HEATER

Crankcase heater is a device for keeping compressor oil warm. By keeping oil warm, refrigerant does not migrate to and condense in compressor shell when the compressor is off. This prevents flooded starts which can damage compressor.

On units that have a single-pole contactor, the crankcase heater is wired in parallel with the contactor contacts and in series with the compressor. (See Fig. 18.) When contacts open, a circuit is completed from line side of the contactor, through crankcase heater, through run windings of compressor, and to other side of line. When contacts are closed, there is no circuit through crankcase heater because both leads are connected to same side of line. This allows heater to operate when system is not calling for cooling. The heater does not operate when system is calling for cooling.

The crankcase heater is powered by high-voltage power of unit. Use extreme caution troubleshooting this device with power on. The easiest method of troubleshooting is to apply voltmeter across crankcase heater leads to see if heater has power. Do not touch heater. Carefully feel area around crankcase heater. If warm, crankcase heater is probably functioning. Do not rely on this method as absolute evidence heater is functioning. If compressor has been running, the area will still be warm.
With power off and heater leads disconnected, check across leads with ohmmeter. Do not look for a specific resistance reading. Check for resistance or an open circuit. Change heater if an open circuit is detected.

TIME-DELAY RELAY
The TDR is a solid-state control, recycle delay timer which keeps the indoor blower operating for 90 sec after thermostat is satisfied. This delay enables blower to remove residual cooling in coil after compression shutdown, thereby improving efficiency of system. The sequence of operation is that on closure of wall thermostat and at end of a fixed on delay of 1 sec, fan relay is energized. When thermostat is satisfied, an off delay is initiated. When fixed delay of 90 $\pm$ 20 sec is completed, fan relay is de-energized and fan motor stops. If wall thermostat closes during this delay, TDR is reset and fan relay remains energized. The TDR is a 24-v device that operates within a range of 15v to 30v and draws about 0.5 amps. If the blower runs continuously instead of cycling off when fan switch is set on AUTO, TDR is probably defective and must be replaced.

PRESSURE SWITCHES
Pressure switches are protective devices wired into control circuit (low voltage). They shut off compressor if abnormally high or low pressures are present in the refrigeration circuit. The low- and high-pressure switches are specifically designed to operate with R-410A systems. R-22 pressure switches must not be used as replacements for the R-410A air conditioner. R-410A pressure switches are identified by a pink stripe down each wire. LOW-PRESSURE SWITCH — The low-pressure switch is located on suction line and protects against low suction pressures caused by such events as loss of charge, low airflow across indoor coil, dirty filters, etc. It opens on a pressure drop at about 50 psig. If system pressure is above this, switch should be closed.

HIGH-PRESSURE SWITCH—The high-pressure switch is located in liquid line and protects against excessive condenser coil pressure. It opens at 610 psig. High pressure may be caused by a dirty condenser coil, failed fan motor, or condenser air recirculation. To check switch, turn off all power to unit, disconnect leads on switch, and apply ohmmeter leads across switch. You should have continuity on a good switch. Because these switches are attached to refrigeration system under pressure, it is not advisable to remove this device for troubleshooting unless you are reasonably certain that a problem exists. If switch must be removed, remove and recover all system charge so that pressure gages read 0 psi. Never open system without breaking vacuum with dry nitrogen.

![Fig. 17—Cycle Protector Wiring](image)

![Fig. 18—Wiring for Single-Pole Contactor](image)

**WARNING**

With power off and heater leads disconnected, check across leads with ohmmeter. Do not look for a specific resistance reading. Check for resistance or an open circuit. Change heater if an open circuit is detected.

TIME-DELAY RELAY
The TDR is a solid-state control, recycle delay timer which keeps the indoor blower operating for 90 sec after thermostat is satisfied. This delay enables blower to remove residual cooling in coil after compression shutdown, thereby improving efficiency of system. The sequence of operation is that on closure of wall thermostat and at end of a fixed on delay of 1 sec, fan relay is energized. When thermostat is satisfied, an off delay is initiated. When fixed delay of 90 $\pm$ 20 sec is completed, fan relay is de-energized and fan motor stops. If wall thermostat closes during this delay, TDR is reset and fan relay remains energized. The TDR is a 24-v device that operates within a range of 15v to 30v and draws about 0.5 amps. If the blower runs continuously instead of cycling off when fan switch is set on AUTO, TDR is probably defective and must be replaced.

PRESSURE SWITCHES
Pressure switches are protective devices wired into control circuit (low voltage). They shut off compressor if abnormally high or low pressures are present in the refrigeration circuit. The low- and high-pressure switches are specifically designed to operate with R-410A systems. R-22 pressure switches must not be used as replacements for the R-410A air conditioner. R-410A pressure switches are identified by a pink stripe down each wire. LOW-PRESSURE SWITCH — The low-pressure switch is located on suction line and protects against low suction pressures caused by such events as loss of charge, low airflow across indoor coil, dirty filters, etc. It opens on a pressure drop at about 50 psig. If system pressure is above this, switch should be closed.

HIGH-PRESSURE SWITCH—The high-pressure switch is located in liquid line and protects against excessive condenser coil pressure. It opens at 610 psig. High pressure may be caused by a dirty condenser coil, failed fan motor, or condenser air recirculation. To check switch, turn off all power to unit, disconnect leads on switch, and apply ohmmeter leads across switch. You should have continuity on a good switch. Because these switches are attached to refrigeration system under pressure, it is not advisable to remove this device for troubleshooting unless you are reasonably certain that a problem exists. If switch must be removed, remove and recover all system charge so that pressure gages read 0 psi. Never open system without breaking vacuum with dry nitrogen.

**WARNING**

Apply heat with torch to solder joint and remove switch. Wear safety glasses when using torch. Have quenching cloth available. Oil vapor in line may ignite when switch is removed. Braze in 1/4-in. flare fitting and replace pressure switch.

FAN MOTOR
Fan motor rotates fan blade that either draws or blows air through outdoor coil to perform heat exchange. Motors are totally enclosed to increase reliability. This also eliminates need for rain shield. For the correct position of fan blade assembly, the fan hub should be flush with the motor shaft. Replacement motors and blades may vary slightly.

**WARNING**

Turn off all power to unit before servicing or replacing fan motor. Be sure unit main power switch is turned off. Failure to do so may result in electric shock, death, or injury from rotating fan blade.

The bearings are permanently lubricated, therefore, no oil ports are provided.

For suspected electrical failures, check for loose or faulty electrical connections, or defective fan motor capacitor. Fan motor is
equipped with thermal overload device in motor windings which may open under adverse operating conditions. Allow time for motor to cool so device can reset. Further checking of motor can be done with an ohmmeter. Set scale on R X 1 position, and check for continuity between 3 leads. Replace motors that show an open circuit in any of the windings. Place 1 lead of ohmmeter on each motor lead. At same time, place other ohmmeter lead on motor case (ground). Replace any motor that shows resistance to ground, arcing, burning, or overheating.

COMPRESSOR PLUG

The compressor electrical plug provides a quick-tight connection to compressor terminals. The plug completely covers compressor terminals and mating female terminals are completely encapsulated in plug. Therefore, terminals are isolated from any moisture so corrosion and resultant pitted or discolored terminals are reduced. The plug is oriented to relief slot in terminal box so cover cannot be secured if wires are not positioned in slot, assuring correct electrical connection at compressor. The plug can be removed by simultaneously pulling while “rocking” plug. However, these plugs are specialized and vary in terminal orientation. Therefore, plugs can be used on only specific compressor. The configuration around fusite terminals is outline of terminal covers. The slot through which wires of plug are routed is oriented on bottom and slightly to left. The correct plug can be connected easily to compressor terminals and plug wires routed easily through slot in terminal cover.

LOW-VOLTAGE TERMINALS

The low-voltage terminal designations and their description/function are used on all split-system condensers.

C—Common side of transformer.

G—Energizes indoor blower circuit.

R—Energizes 24-v power from transformer.

Y—Energizes contactor for cooling.

The compressor used in this product is specifically designed to operate with R-410A refrigerant and cannot be interchanged.

MECHANICAL FAILURES

A compressor is a mechanical pump driven by an electric motor contained in a welded or hermetic shell. In a mechanical failure, motor or electrical circuit appears normal, but compressor does not function normally.

COMPRESSOR FAILURES

Compressor failures are classified in 2 broad failure categories; mechanical and electrical. Both types are discussed below.

COMPRESSOR FAILURES

Compressor failures are classified in 2 broad failure categories; mechanical and electrical. Both types are discussed below.

MECHANICAL FAILURES

A compressor is a mechanical pump driven by an electric motor contained in a welded or hermetic shell. In a mechanical failure, motor or electrical circuit appears normal, but compressor does not function normally.

MECHANICAL FAILURES

A compressor is a mechanical pump driven by an electric motor contained in a welded or hermetic shell. In a mechanical failure, motor or electrical circuit appears normal, but compressor does not function normally.

COMPRESSOR FAILURES

Compressor failures are classified in 2 broad failure categories; mechanical and electrical. Both types are discussed below.
a clamp-on ammeter around common (blk) lead of compressor. Current drawn when it attempts to start is then measured. Locked rotor amp (LRA) value is stamped on compressor nameplate. If compressor draws locked rotor amps and all other external sources of problems have been eliminated, compressor must be replaced. Because compressor is a sealed unit, it is impossible to determine exact mechanical failure. However, complete system should be checked for abnormalities such as incorrect refrigerant charge, restrictions, insufficient airflow across indoor or outdoor coil, etc., which could be contributing to the failure.

RUNS, DOES NOT PUMP — In this type of failure, compressor motor runs and turns compressor, but compressor does not pump refrigerant. A clamp-on ammeter on common leg shows a very low current draw, much lower than rated load amp (RLA) value stamped on compressor nameplate. Because no refrigerant is being pumped, there is no return gas to cool compressor motor. It eventually overheats and shuts off on its internal protection.

NOISY COMPRESSOR — Noise may be caused by a variety of internal or external problems such as loosened hardware. System problems such as an overcharged compressor (especially at start-up) may also cause excessive noise.

COMPRESSOR LEAKS — Sometimes a leak is detected at weld seam around girth of compressor, or at a fitting that joins compressor shell. Many of these leaks can be repaired and the compressor saved if correct procedure is followed.

1. Turn off all power to unit.
2. Remove and recover all refrigerant from system so that gage pressures are 0 psi.
3. Clean area around leak to bare metal.
4. Apply flux and repair joint with silver brazing alloy. Do not use low temperature solder such as 50-50.
5. Clean off excess flux, check for leaks, and apply paint over repaired area to prevent corrosion.

Do not use this method to repair a compressor leak due to severe corrosion. Never attempt to repair a compressor leaking at electric terminals. This type of failure requires compressor replacement.

ELECTRICAL FAILURES
The compressor mechanical pump is driven by an electric motor within its hermetic shell. In electrical failures, compressor does not run although external electrical and mechanical systems appear normal. Compressor must be checked electrically for abnormalities.

Before troubleshooting compressor motor, review this description of compressor motor terminal identification.

SINGLE-PHASE MOTORS
To identify terminals C, S, and R:
1. Turn off all unit power.
2. Discharge run and start capacitors to prevent shock.
3. Remove all wires from motor terminals.
4. Read resistance between all pairs of terminals using an ohmmeter on 0-10 ohm scale.
5. Determine 2 terminals that provide greatest resistance reading. Through elimination, remaining terminal must be common (C). Greatest resistance between common (C) and another terminal indicates start winding because it has more turns. This terminal is start (S). Remaining terminal will be run winding (R). (See Fig. 20.)

NOTE: If compressor is hot, allow time to cool and internal line break to reset. There is an internal line break protector which must be closed.

NOTE: Ohm readings in Fig. 20 are examples, not actual measurements.

All compressors are equipped with internal motor protection. If motor becomes hot for any reason, protector opens. Compressor should always be allowed to cool and protector to close before troubleshooting. Always turn off all power to unit and disconnect leads at compressor terminals before taking readings.

Most common motor failures are due to either an open, grounded, or short circuit. When a compressor fails to start or run, 3 tests can help determine the problem. First, all possible external causes should be eliminated, such as overloads, improper voltage, pressure equalization, defective capacitor(s), relays, wiring, etc. Compressor has internal line break overload, so be certain it is closed.

OPEN CIRCUIT
To determine if any winding has a break in the internal wires and current is unable to pass through, follow these steps.
1. Be sure all power is off.
2. Discharge all capacitors.
3. Remove wires from terminals C, S, and R.
4. Check resistance from C-R, C-S, and R-S using an ohmmeter on 0-1000 ohm scale.
Because winding resistances are usually less than 10 ohms, each reading appears to be approximately 0 ohm. If resistance remains at 1000 ohms, an open or break exists and compressor should be replaced.

**CAUTION**

Be sure internal line break overload is not temporarily open.

**GROUND CIRCUIT**

To determine if a wire has broken or come in direct contact with shell, causing a direct short to ground follow these steps.

1. Allow crankcase heaters to remain on for several hr before checking motor to ensure windings are not saturated with refrigerant.
2. Using an ohmmeter on R X 10,000 ohm scale or megohmmeter (follow manufacturer’s instructions).
3. Be sure all power is off.
4. Discharge all capacitors.
5. Remove wires from terminals C, S, and R.
6. Place 1 meter probe on ground or on compressor shell. Make a good metal-to-metal contact. Place other probe on terminals C, S, and R in sequence.
7. Note meter scale.
8. If reading of 0 or low resistance is obtained, motor is grounded. Replace compressor.

Compressor resistance to ground should not be less than 1000 ohms per volt of operating voltage.

Example:

230 volts X 1000 ohms/volt = 230,000 ohms minimum.

**SHORT CIRCUIT**

To determine if any wires within windings have broken through their insulation and made contact with other wires, thereby shorting all or part of the winding(s), be sure the following conditions are met.

1. Correct motor winding resistances must be known before testing, either from previous readings or from manufacturer’s specifications.
2. Temperature of windings must be as specified, usually about 70 °F.
3. Resistance measuring instrument must have an accuracy within ± 5-10 percent. This requires an accurate ohmmeter such as a Wheatstone bridge or null balance-type instrument.
4. Motor must be dry or free from direct contact with liquid refrigerant.

**MAKE THIS CRITICAL TEST**

(Not advisable unless above conditions are met)

1. Be sure all power is off.
2. Discharge all capacitors.
3. Remove wires from terminals C, S, and R.
4. Place instrument probes together and determine probe and lead wire resistance.
5. Check resistance readings from C-R, C-S, and R-S.
6. Subtract instrument probe and lead resistance from each reading.

If any reading is within ± 20 percent of known resistance, motor is probably normal. Usually a considerable difference in reading is noted if a turn-to-turn short is present.

---

**CAUTION**

This system uses refrigerant R-410A which has higher pressures than R-22 and other refrigerants. No other refrigerant may be used in this system. Gage set, hoses, and recovery system must be designed to handle R-410A. If you are unsure consult the equipment manufacturer.

In an air conditioning system, refrigerant transfers heat from one place to another. It is useful to understand flow of refrigerant in a system. In a straight cooling system, compressed hot gas leaves compressor and enters condensing coil. As gas passes through condenser coil, it rejects heat and condenses into liquid. The liquid leaves condensing unit through liquid line and enters metering device at indoor coil. As it passes through metering device, it becomes a gas-liquid mixture. As it passes through indoor coil, it absorbs heat and the refrigerant moves to the compressor and is again compressed to a hot gas, and cycle repeats.

**COMPRESSOR OIL**

**CAUTION**

The compressor in this system uses a polyol ester (POE) oil Mobil EAL ARTIC 22CC. This oil is extremely hygroscopic, meaning it absorbs water readily. POE oils can absorb 15 times as much water as other oils designed for HCFC and CFC refrigerants. Take all necessary precautions to avoid exposure of the oil to the atmosphere.

**BRAZING**

When brazing is required in the refrigeration system, certain basics should be remembered. The following are a few of the basic rules.

1. Clean joints make the best joints. To clean:
   a. Remove all oxidation from surfaces to a shiny finish before brazing.
   b. Remove all flux residue with brush and water while material is still hot.
2. Use "sil-fos" or "phos-copper" for copper-to-copper only. No flux is required.
3. Silver solder is used on copper-to-brass, copper-to-steel, or copper-to-copper. Flux is required when using silver solder. Low temperature solder is not recommended.
4. Fluxes should be used carefully. Avoid excessive application and do not allow fluxes to enter into the system.
5. Brazing temperature of copper is proper when it is heated to a dull red color.

This section on brazing is not intended to teach a technician how to braze. There are books and classes which teach and refine brazing techniques. The basic points above are listed only as a reminder.

**SERVICE VALVES AND PUMPDOWN**

Service valves provide a means for holding original factory charge in outdoor unit prior to hookup to indoor coil. They also contain gage ports for measuring system pressures, and provide shut-off convenience for certain types of repairs. (See Fig. 21.)

The service valve is a combination front seating/back seating valve, which has a metal-to-metal seat in both the open and closed positions. When it is fully back seated, the service port is not
pressurized. To pressurize the service port, this valve must be moved off the back seating position. This valve does not contain a Schrader fitting. The service valves are designed for sweat connection to field tubing.

The service valves in outdoor unit come from factory front seated. This means that refrigerant charge is isolated from line-set connection ports. The interconnecting tubing (line set) can be brazed to service valves using either silver bearing or non-silver bearing brazing material. Consult local codes. Before brazing line-set to valves, belled ends of sweat connections on service valves must be cleaned so that no brass plating remains on either inside or outside of bell joint. **To prevent damage to valve and/or cap "O" ring, use a wet cloth or other acceptable heat-sinking material on valve before brazing.** To prevent damage to unit, use a metal barrier between brazing area and unit.

After the brazing operation and the refrigerant tubing and evaporator coil have been evacuated, valve stem can be turned counterclockwise until it opens or back seats, which releases refrigerant into tubing and evaporator coil. The system can now be operated.

Back seating service valves must be back seated (turned counterclockwise until seated) before service port caps can be removed and hoses of gage manifold connected. In this position, refrigerant has access from and through outdoor and indoor unit.

The service valve stem cap is tightened to 20 ft/lb torque. The seating surface of valve stem has a knife set edge against which caps are tightened to attain a metal-to-metal seal.

The service valve cannot be field repaired, therefore, only a complete valve or valve stem and service port caps are available for replacement.

If service valve is to be replaced, a metal barrier must be inserted between valve and unit to prevent damaging unit exterior from heat of the brazing operations.

---

**WARNING**

Wear safety glasses and gloves when handling refrigerants. Failure to follow this warning can cause a fire, personal injury, or death.

**PUMPDOWN PROCEDURE** — Service valves provide a convenient shut-off valve useful for certain refrigeration system repairs. System may be pumped down to make repairs on low side without losing complete refrigerant charge.

1. Attach pressure gage to suction service valve gage port.
2. Front seat liquid-line valve.
3. Start unit in cooling mode. Run until low-pressure switch opens at 50 psig (350kPa). Do not allow compressor to pump to a vacuum.
5. Recover remaining refrigerant.

**NOTE:** All outdoor unit coils will hold only factory-supplied amount of refrigerant. Excess refrigerant, such as in long-line applications, may cause unit to relieve pressure through internal pressure relief valve (indicated by sudden rise of suction pressure) before suction pressure reaches 50 psig (350 Kpa). If this occurs, shut off unit immediately, front seat suction valve, and recover remaining refrigerant.

**FILTER DRIER**

The filter drier is specifically designed to operate with R-410A, use only factory-authorized components. When removing a filter drier, use a tubing cutter to cut drier from system. **Do not unsweat a filter drier** from system. Heat from unsweating will release moisture and contaminants from drier into the system.

**ACCUMULATOR**

The accumulator is specifically designed to operate with R-410A, use only factory-authorized components. Under some light load conditions on indoor coils, liquid refrigerant is present in suction gas returning to compressor. The accumulator stores liquid and allows it to boil off into a vapor so it can be safely returned to compressor. Since a compressor is designed to pump refrigerant in its gaseous state, introduction of liquid into it could cause severe damage or total failure of compressor.

The accumulator is a passive device which seldom needs replacing. Occasionally its internal oil return orifice or bleed hole may become plugged. Some oil is contained in refrigerant returning to compressor. It cannot boil off in accumulator with liquid refrigerant. The bleed hole allows a small amount of oil and refrigerant to enter the return line where velocity of refrigerant returns it to compressor. If bleed hole plugs, oil is trapped in accumulator, and compressor will eventually fail from lack of lubrication. If bleed hole is plugged, accumulator must be changed. The accumulator has a fusible element located in the bottom end bell. (See Fig. 22.) This fusible element will melt at 430° F and vent the refrigerant if this temperature is reached either internal or external to the system. If fuse melts, the accumulator must be replaced.

To change accumulator:

1. Shut off all power to unit.
2. Remove and reclaim all refrigerant from system.

**NOTE:** Coil may be removed for access to accumulator. Refer to appropriate sections of Service Manual for instructions.
4. When accumulator is exposed, remove it from system with tubing cutter.
5. Tape ends of open tubing.
7. Thoroughly rinse any flux residue from joints and paint with corrosion-resistant coating such as zinc-rich paint.
8. Reinstall factory authorized accumulator into system with copper slip couplings.
9. Evacuate and charge system.

Pour and measure oil quantity (if any) from old accumulator. If more than 20 percent of oil charge is trapped in accumulator, add new POE oil to compressor to make up for this loss. (See Table 4.)

**ACCURATER**

AccuRater piston has a refrigerant metering hole through it. The retainer forms a sealing surface for liquid-line flare connection. Any R-22 piston must be replaced with factory-approved piston for R-410A. If unit is shipped with a piston ring (located in piston bag) be sure it is installed per Fig. 23. The piston ring will ensure the piston stays seated during all operating conditions. To check, clean, or replace piston follow these steps. (See Fig. 23.)

1. Shut off power to unit.
2. Pump unit down using pumpdown procedure described in this service manual.
3. Loosen nut and remove liquid line flare connection from AccuRater.
4. Pull retainer out of body, being careful not to scratch flare sealing surface. If retainer does not pull out easily, carefully use locking pliers to remove it.
5. Slide piston and piston ring out by inserting a small soft wire with small kinks through metering hole. Do not damage metering hole, sealing surface around piston cones, or fluted portion of piston.
6. Clean piston refrigerant metering hole.

7. Install a new retainer O-ring or retainer assembly before reassembling AccuRater.

**THERMOSTATIC EXPANSION VALVE (TXV)**

The thermostatic expansion valve is specifically designed to operate with R-410A. Do not use an R-22 TXV.

**HARD SHUT-OFF (HSO)** — Has no bleed port and allows no bleed through after system shutdown. No pressure equalization occurs.

The standard TXV is a metering device that is used in air conditioning systems to adjust to changing load conditions by maintaining a preset superheat temperature at the outlet of evaporator coil. The volume of refrigerant metered through valve seat is dependent upon the following: (See Fig. 26.)

1. Superheat temperature sensed by cap tube sensing bulb on suction tube at outlet of evaporator coil. As long as this bulb and cap tube contains some liquid refrigerant, this temperature is converted into suction pressure pushing downward on diaphragm, which tends to open valve via pushrods.
2. The suction pressure at outlet of evaporator coil is transferred via external equalizer tube to underside of diaphragm. The needle valve on pin carrier is spring loaded, which exerts pressure on underside of diaphragm via pushrods and tends to close valve. Therefore, bulb pressure equals evaporator pressure (at outlet of coil) plus spring pressure. If load increases, temperature increases at bulb, which increases pressure on topside of diaphragm, which pushes pin carrier away from seat, opening valve and increasing flow of refrigerant. The increased refrigerant flow causes increased leaving evaporator pressure which is transferred via equalizer tube to underside of diaphragm. This tends to cause the pin carrier spring pressure to close valve. The refrigerant flow is effectively stabilized to load demand with negligible change in superheat.
REPLACING TXV

An existing R-22 TXV must be replaced with a factory-approved TXV specifically designed for R-410A. To replace an R-22 TXV follow these steps.

1. Remove piston retainer or existing TXV. If existing piston is not removed, TXV will not function properly.
2. Use tubing cutter to remove flare nut from distributor.
3. Braze a field-fabricated tube from distributor to outside of cabinet. Leave enough exposed tubing to attach supplied coupling. (See Fig. 24-E.)
4. Attach coupling Fig. 24-E to exposed end of tube. Use silver solder.
5. Attach TXV to coupling. Use a backup wrench to avoid damaging tubing. Follow flow arrow on valve.
6. Install TXV equalizer adapter Fig. 24-B on indoor coil suction line. Adapter has a 1/4-in. male flare connection.
7. Connect free end of equalizer tube on TXV to 1/4-in fitting on adapter.
8. Attach TXV bulb to horizontal section of suction line using clamps Fig. 24-C. (See Fig. 25.) for proper placement of bulb and insulate with field-supplied tape.
9. Attach straight flare (Fig. 24-D.) to TXV. Braze field-supplied tubing to belled ends of liquid and vapor lines.
10. Insulate liquid line between TXV assembly and coil connections with field-supplied insulation tape to prevent sweating.

REFRIGERATION SYSTEM REPAIR

LEAK DETECTION

New installations should be checked for leaks prior to complete charging.

If a system has lost all or most of its charge, system must be pressurized again to approximately 150 lb minimum. This can be done by adding refrigerant using normal charging procedures or by pressurizing system with nitrogen (less expensive than refrigerant). Nitrogen also leaks faster than R-410A. Nitrogen cannot, however, be detected by an electronic leak detector. (See Fig. 28.)

Due to the high pressure of nitrogen, it should never be used without a pressure regulator on the tank. Failure to follow this warning can cause a fire, personal injury, or death.

Assuming that a system is pressurized with either all refrigerant or a mixture of nitrogen and refrigerant, leaks in the system can be found with an electronic leak detector that is capable of detecting HFC refrigerant.

If system has been operating for some time, make first check for a leak visually. Since refrigerant carries a small quantity of oil, traces of oil at any joint or connection is an indication that refrigerant is leaking at that point.

A simple and inexpensive method of testing for leaks is to use soap bubbles. Any solution of water and soap may be used. Soap solution is applied to all joints and connections in system. A small pinhole leak is located by tracing bubbles in soap solution around leak. If the leak is very small, several minutes may pass before a bubble will form. Popular commercial leak detection solutions give better, longer-lasting bubbles and more accurate results than
plain soapy water. The bubble solution should be removed from the tubing and fittings after checking for leaks as some solutions may corrode the metal.

Use an electronic leak detector designed for HFCs to check for leaks. This unquestionably is the most efficient and easiest method for checking leaks. There are various types of electronic leak detectors. Electronic leak detectors must be suitable for R-410A refrigerant. Check with manufacturer of equipment for suitability. Generally speaking, they are portable, lightweight, and consist of a box with several switches and a probe or sniffer. Detector is turned on and probe is passed around all fittings and connections in system. Leak is detected by either the movement of a pointer on detector dial, a buzzing sound, or a light.

In all instances when a leak is found, system charge must be recovered and leak repaired before final charging and operation. After leak testing or leak is repaired, evacuate system reclaiming refrigerant and recharge with correct refrigerant charge.

COIL REMOVAL

Coils are easy to remove if required for compressor removal, or to replace coil. Shut off all power to unit. Remove and recover refrigerant from system through service valves.

1. Remove top cover. (See Remove Top Cover in Cabinet section of the manual.)
2. Remove screws in base pan to coil grille.
3. Remove coil grille from unit.
4. Remove screws on corner post holding coil tube sheet.
5. Use midget tubing cutter to cut liquid and vapor lines at both sides of coil. Cut in convenient location for easy reassembly with copper slip couplings.

**WARNING**

Cut tubing to reduce possibility of fire and personal injury.
6. Lift coil vertically from basepan and carefully place aside.
7. Reverse procedure to reinstall coil.
8. Replace filter drier, evacuate system, recharge, and check for normal system operation.

COMPRESSOR REMOVAL AND REPLACEMENT

Once it is determined that compressor has failed and the reason established, compressor must be replaced.

⚠️ CAUTION

Turn off all power to unit before proceeding. Wear safety glasses and gloves when handling refrigerants. Acids formed as a result of motor burnout can cause burns.

⚠️ WARNING

Wear safety glasses and gloves when handling refrigerants and when using brazing torch. Failure to follow this warning can cause a fire, personal injury, or death.

1. Shut off all power to unit.
2. Remove and recover all refrigerant from system until pressure gages read 0 psi. Use all service ports. Never open a system under a vacuum to atmosphere. Break vacuum with dry nitrogen holding charge first. Do not exceed 5 psig.
3. Disconnect electrical leads from compressor. Disconnect or remove crankcase heater and remove compressor hold-down bolts.
4. Cut compressor from system with tubing cutter. Do not use brazing torch for compressor removal. Oil vapor may ignite when compressor is disconnected.
5. Scratch matching marks on stubs in old compressor. Make corresponding marks on replacement compressor.
6. Use torch to remove stubs from old compressor and to reinstall them in replacement compressor.
7. Use copper couplings to tie compressor back into system.
8. Replace filter drier, evacuate system, recharge, and check for normal system operation.

⚠️ CAUTION

Do not leave system open to atmosphere. Product damage could occur. Compressor oil is highly susceptible to moisture absorption.

SYSTEM CLEAN-UP AFTER BURNOUT

Some compressor electrical failures can cause motor to burn. When this occurs, byproducts of burn, which include sludge, carbon, and acids, contaminate system. If burnout is severe enough, system must be cleaned before replacement compressor is installed. The 2 types of motor burnout are classified as mild or severe.

In mild burnout, there is little or no detectable odor. Compressor oil is clear or slightly discolored. An acid test of compressor oil will be negative. This type of failure is treated the same as mechanical failure. Liquid-line strainer should be removed and liquid-line filter drier replaced.

In a severe burnout, there is a strong, pungent, rotten egg odor. Compressor oil is very dark. Evidence of burning may be present in tubing connected to compressor. An acid test of compressor oil will be positive. Follow these steps.
1. TXV must be cleaned or replaced.
2. Drain any trapped oil from accumulator if used.

3. Remove and discard liquid-line strainer and filter drier.
4. After system is reassembled, install liquid and suction-line R-410A filter driers.
5. Operate system for 10 hr. Monitor pressure drop across drier. If pressure drop exceeds 3 psig replace suction-line and liquid-line filter driers. Be sure to purge system with dry nitrogen when replacing filter driers. Continue to monitor pressure drop across suction-line filter drier. After 10 hr of run time, remove suction-line filter drier and replace liquid-line filter drier. Never leave suction-line filter drier in system longer than 72 hr (actual time).
6. Charge system. (See unit information plate.)

Fig. 30—Deep Vacuum Graph

EVACUATION

Proper evacuation of a unit will remove non-condensibles and assure a tight, dry system before charging. The 2 methods used to evacuate a system are the deep vacuum method and the triple evacuation method.

DEEP VACUUM METHOD — The deep vacuum method requires a vacuum pump capable of pulling a vacuum of 500 microns and a vacuum gage capable of accurately measuring this vacuum depth. The deep vacuum method is the most positive way of assuring a system is free of air and liquid water. (See Fig. 30.)

TRIPLE EVACUATION METHOD — The triple evacuation method should only be used when vacuum pump is capable of pumping down to only 28 in. of mercury vacuum, and system does not contain any liquid water. The procedure is as follows. (See Fig. 31.)

1. Pump system down to 28 in. of mercury vacuum and allow pump to continue to operate for additional 15 minutes.
2. Close service valves and shut off vacuum pump.
3. Connect a nitrogen cylinder and regulator to system and open until system pressure is 2 psig.
4. Close service valve and allow system to stand for 1 hr, during which time dry nitrogen will be able to diffuse throughout system, absorbing moisture.
5. Repeat procedure 3 times. System will then be free of any contaminants and water vapor.

R-410A REFRIGERANT CHARGING

Refer to unit information plate for superheat charging procedure. R-410A refrigerant cylinders contain a dip tube which allows liquid refrigerant to flow from cylinder in upright position.
Charge R-410A units with cylinder in upright position and a commercial type metering device in the manifold hose. Charge refrigerant into suction-line.

For all approved combinations, system must be charged correctly for normal system operation and reliable operation of components. If system has lost all charge, weigh in charge using dial-a-charge designed for R-410A refrigerant or digital scale.

System charge should be fine tuned by using superheat method.

CHARGE ACCURATELY

<table>
<thead>
<tr>
<th>Undercharge</th>
<th>Proper Charge</th>
<th>Overcharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>- LOW LOW-SIDE PRESSURE</td>
<td>- LONG LIFE</td>
<td>- HIGH HIGH-SIDE PRESSURE</td>
</tr>
<tr>
<td>- HIGH SUPERHEAT</td>
<td>- SAFE OPERATION</td>
<td>- HIGH DISCHARGE TEMPERATURE</td>
</tr>
<tr>
<td>- OVERHEATED COMPRESSOR AND MOTOR</td>
<td>- DESIGN CAPACITY</td>
<td>- FLOODBACK</td>
</tr>
<tr>
<td>- LOW SYSTEM CAPACITY</td>
<td>- PEAK EFFICIENCY</td>
<td>- LOW SYSTEM CAPACITY</td>
</tr>
<tr>
<td>- POOR EFFICIENCY</td>
<td></td>
<td>- POOR EFFICIENCY</td>
</tr>
<tr>
<td>- SLUDGE/ CARBONIZATION</td>
<td></td>
<td>- SLUDGE/ CARBONIZATION</td>
</tr>
</tbody>
</table>

Fig. 31—Triple Evacuation Method

CHECK FOR TIGHT, DRY SYSTEM (IF IT HOLDS DEEP VACUUM)

CHARGE SYSTEM

CHECKING CHARGE

Superheat charging is the process of charging refrigerant in a system until temperature (superheat) of suction gas entering compressor reaches a prescribed value. Small variations of charge affect suction gas superheat temperatures greatly. Therefore, this method of charging is very accurate. This method can be used with fixed restrictor-type metering devices such as AccuRater. For units using a TXV, subcooling method must be used. To charge by superheat, a service technician will need an accurate superheat thermocouple or thermistor-type thermometer, a sling psychrometer, and a gage manifold. Do not use mercury or small dial type thermometers as they are not adequate for this type of measurement. Refer to unit information plate for superheat charging procedure.

SUBCOOLING CHARGING METHOD (SEE CHARGING TABLE IN APPENDIX)

1. Operate unit a minimum of 15 minutes before checking charge.
2. Measure liquid service valve pressure by attaching an accurate gage to service port.
3. Measure liquid-line temperature by attaching an accurate thermistor-type or electronic thermometer to liquid line near outdoor coil.
4. Refer to unit information plate to find required subcooling temperature for unit. Find point at which the required subcooling temperature intersects measured liquid service valve pressure.
5. To obtain required subcooling temperature at a specific liquid-line pressure, add refrigerant if liquid-line temperature is higher than indicated or remove refrigerant if temperature is lower. Allow a tolerance of 3°F.

CARE AND MAINTENANCE

To assure high performance and minimize possible equipment malfunction, it is essential that maintenance be performed periodically on this equipment. The frequency with which maintenance is performed is dependent on such factors as hours of operation, geographic location, and local environmental conditions.

WARNING

Disconnect all electrical power to unit before performing any maintenance or service on outdoor unit. Remember to disconnect power supply to air handler as this unit supplies low-voltage power to the outdoor unit. Failure to follow this warning can cause a fire, personal injury, or death.

The minimum maintenance that should be performed on this equipment is as follows.

1. Check outdoor coil for cleanliness each month during cooling season and clean as necessary.
2. Check fan motor and blade for cleanliness each heating and cooling season and clean as necessary.
3. Check electrical connections for tightness and controls for proper operation each cooling season and service as necessary.

CAUTION

Because of possible damage to the equipment or personal injury, maintenance should be performed by qualified personnel only.

CLEANING

Cleaning Coil

1. Remove top cover. (See Remove Top Cover in Cabinet section of this manual.)

CAUTION

Coil fin damage can result in higher operating costs or compressor damage. Do not use flame, high-pressure water, steam, volatile or corrosive cleaners on fins or tubing.

2. Clean coil using vacuum cleaner and its crevice tool. Move crevice tool vertically, close to area being cleaned, making
Cleaning Outdoor Fan Motor and Blade
1. Remove fan motor and blade. Be careful not to bend or dent fan blade.
2. Clean motor and blade with soft brush or cloth. Be careful not to disturb balance weights on fan blade.
3. Check fan blade setscrew for tightness.
4. Reinstall fan motor and blade to top cover and check for alignment.
5. Reinstall top cover and position blade. (See Fig. 7.)
6. Reconnect electrical power and check for proper operation.

Electrical Controls and Wiring
1. Disconnect power to both outdoor and indoor units.
2. Check all electrical connections for tightness. Tighten all screws on electrical connections. If any connections appear to be burned or smokey, disassemble the connection, clean all parts and stripped wires, and reassemble. Use a new connector if old one is burned or corroded, and crimp tightly.
3. Reconnect electrical power to indoor and outdoor units and observe unit through 1 complete operating cycle.
4. If there are any discrepancies in operating cycle, troubleshoot to find the cause and correct.

Refrigerant Circuit
1. Check refrigerant charge using the superheat method, and if low on charge, check unit for leaks using an electronic leak detector.
2. If any leaks are found, remove and reclaim or isolate charge (pumpdown) if applicable. Make necessary repairs.
3. Evacuate, recharge, and observe unit through 1 complete operating cycle.

Final Check-Out
After the unit has been operating, the following items should be checked.
1. Check that unit operational noise is not excessive due to vibration of component, tubing, panels, etc. If present, isolate problem and correct.
2. Check to be sure caps are installed on service valves and are tight.
3. Check to be sure tools, loose parts, and debris are removed from unit.
4. Check to be sure all panels and screws are in place and tight.

Desert and Seacoast Locations
Special consideration must be given to installation and maintenance of condensing units installed in coastal or desert locations. This is because salt and alkali content of sand adheres to aluminum fins of coil and can cause premature coil failure due to corrosion from salt, alkali, and moisture.

Preventive measures can be taken during installations, such as:
1. Locate unit on side of structure opposite prevailing winds.
2. Elevate unit to height where drifting sand cannot pile up against coil. Four in. high mounting feet are available as accessories and can be used to elevate unit.
3. Addition of coastal filter (See PDD for accessory listing).

Maintenance in desert and seacoast locations
1. Frequent inspection of coil and basepan especially after storms and/or high winds.
2. Clean coil by flushing out sand from between coil fins and out of basepan as frequently as inspection determines necessary.
3. In off season, cover with covering that allows air to circulate through but prevents sand from sifting in (such as canvas material). Do not use plastic because plastic will hold moisture.
### Pressure vs. Temperature Chart

#### R-410A

<table>
<thead>
<tr>
<th>PSIG</th>
<th>°F</th>
<th>PSIG</th>
<th>°F</th>
<th>PSIG</th>
<th>°F</th>
<th>PSIG</th>
<th>°F</th>
<th>PSIG</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>-37.7</td>
<td>114</td>
<td>37.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-34.7</td>
<td>116</td>
<td>38.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-32.0</td>
<td>118</td>
<td>39.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-29.4</td>
<td>120</td>
<td>40.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-29.4</td>
<td>120</td>
<td>40.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-26.9</td>
<td>122</td>
<td>41.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-24.5</td>
<td>124</td>
<td>42.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-22.2</td>
<td>126</td>
<td>43.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-20.0</td>
<td>128</td>
<td>43.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>-17.9</td>
<td>130</td>
<td>44.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>-15.8</td>
<td>132</td>
<td>45.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>-13.8</td>
<td>134</td>
<td>46.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-11.9</td>
<td>136</td>
<td>47.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-10.1</td>
<td>138</td>
<td>47.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>-8.3</td>
<td>140</td>
<td>48.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>-6.5</td>
<td>142</td>
<td>49.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-4.7</td>
<td>144</td>
<td>50.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>-3.2</td>
<td>146</td>
<td>51.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-1.6</td>
<td>148</td>
<td>51.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.0</td>
<td>150</td>
<td>52.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.5</td>
<td>152</td>
<td>53.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3.0</td>
<td>154</td>
<td>54.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4.5</td>
<td>156</td>
<td>54.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>5.9</td>
<td>158</td>
<td>55.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>7.3</td>
<td>160</td>
<td>56.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>8.6</td>
<td>162</td>
<td>57.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>10.0</td>
<td>164</td>
<td>57.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>11.3</td>
<td>166</td>
<td>58.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>12.6</td>
<td>168</td>
<td>59.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>13.8</td>
<td>170</td>
<td>59.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>15.1</td>
<td>172</td>
<td>60.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>16.3</td>
<td>174</td>
<td>61.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>17.5</td>
<td>176</td>
<td>61.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>18.7</td>
<td>178</td>
<td>62.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>19.8</td>
<td>180</td>
<td>63.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>20.1</td>
<td>182</td>
<td>63.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>22.1</td>
<td>184</td>
<td>64.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>23.2</td>
<td>186</td>
<td>65.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>24.3</td>
<td>188</td>
<td>65.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>25.4</td>
<td>190</td>
<td>66.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>26.4</td>
<td>192</td>
<td>67.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>27.4</td>
<td>194</td>
<td>67.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>28.5</td>
<td>196</td>
<td>68.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>29.5</td>
<td>198</td>
<td>68.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>30.5</td>
<td>200</td>
<td>69.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>31.2</td>
<td>202</td>
<td>70.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>32.2</td>
<td>204</td>
<td>70.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>33.2</td>
<td>206</td>
<td>71.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>34.1</td>
<td>208</td>
<td>72.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>35.1</td>
<td>210</td>
<td>72.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>35.5</td>
<td>212</td>
<td>73.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>36.9</td>
<td>214</td>
<td>73.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Based on ALLIED SIGNAL Data*
<table>
<thead>
<tr>
<th>LIQUID PRESSURE AT SERVICE VALVE (PSIG)</th>
<th>LIQUID PRESSURE AT SERVICE VALVE (PSIG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>189</td>
<td>58  56  54  52  50  48</td>
</tr>
<tr>
<td>195</td>
<td>60  58  56  54  52  50</td>
</tr>
<tr>
<td>202</td>
<td>62  60  58  56  54  52</td>
</tr>
<tr>
<td>208</td>
<td>64  62  60  58  56  54</td>
</tr>
<tr>
<td>215</td>
<td>66  64  62  60  58  56</td>
</tr>
<tr>
<td>222</td>
<td>68  66  64  62  60  58</td>
</tr>
<tr>
<td>229</td>
<td>70  68  66  64  62  60</td>
</tr>
<tr>
<td>236</td>
<td>72  70  68  66  64  62</td>
</tr>
<tr>
<td>243</td>
<td>74  72  70  68  66  64</td>
</tr>
<tr>
<td>251</td>
<td>76  74  72  70  68  66</td>
</tr>
<tr>
<td>259</td>
<td>78  76  74  72  70  68</td>
</tr>
<tr>
<td>266</td>
<td>80  78  76  74  72  70</td>
</tr>
<tr>
<td>274</td>
<td>82  80  78  76  74  72</td>
</tr>
<tr>
<td>283</td>
<td>84  82  80  78  76  74</td>
</tr>
<tr>
<td>291</td>
<td>86  84  82  80  78  76</td>
</tr>
<tr>
<td>299</td>
<td>88  86  84  82  80  78</td>
</tr>
<tr>
<td>308</td>
<td>90  88  86  84  82  80</td>
</tr>
<tr>
<td>317</td>
<td>92  90  88  86  84  82</td>
</tr>
<tr>
<td>326</td>
<td>94  92  90  88  86  84</td>
</tr>
<tr>
<td>335</td>
<td>96  94  92  90  88  86</td>
</tr>
<tr>
<td>345</td>
<td>98  96  94  92  90  88</td>
</tr>
<tr>
<td>354</td>
<td>100 98  96  94  92  90</td>
</tr>
<tr>
<td>364</td>
<td>102 100 98  96  94  92</td>
</tr>
<tr>
<td>374</td>
<td>104 102 100 98  96  94</td>
</tr>
<tr>
<td>384</td>
<td>106 104 102 100 98  96</td>
</tr>
<tr>
<td>395</td>
<td>108 106 104 102 100 98</td>
</tr>
<tr>
<td>406</td>
<td>110 108 106 104 102 100</td>
</tr>
<tr>
<td>416</td>
<td>112 110 108 106 104 102</td>
</tr>
<tr>
<td>427</td>
<td>114 112 110 108 106 104</td>
</tr>
<tr>
<td>439</td>
<td>116 114 112 110 108 106</td>
</tr>
<tr>
<td>450</td>
<td>118 116 114 112 110 108</td>
</tr>
<tr>
<td>462</td>
<td>120 118 116 114 112 110</td>
</tr>
<tr>
<td>474</td>
<td>122 120 118 116 114 112</td>
</tr>
<tr>
<td>486</td>
<td>124 122 120 118 116 114</td>
</tr>
<tr>
<td>499</td>
<td>126 124 122 120 118 116</td>
</tr>
<tr>
<td>511</td>
<td>128 126 124 122 120 118</td>
</tr>
</tbody>
</table>

Subcooling Charging Table
Air Conditioner Troubleshooting Chart
ATTENTION INSTALLERS AND SERVICE TECHNICIANS!

AIR CONDITIONER WITH R-410A—QUICK REFERENCE GUIDE

• R-410A refrigerant operates at 50%-70% higher pressures than R-22. Be sure that servicing equipment and replacement components are designed to operate with R-410A.
• R-410A refrigerant cylinders are rose colored.
• R-410A refrigerant cylinders have a dip tube which allows liquid to flow out of cylinder in upright position.
• R-410A systems should be charged with liquid refrigerant. Use a commercial type metering device in the manifold hose.
• R-410A, as with other HFCs, is only compatible with POE oils.
• Vacuum pumps will not remove moisture from oil.
• Do not use liquid-line filter driers with rated working pressures less than 600 psig.
• Do not install a suction-line filter drier in liquid-line.
• POE oils absorb moisture rapidly. Do not expose oil to atmosphere.
• Wrap all filter driers and service valves with wet cloth when brazing.
• A liquid-line filter drier is required on every unit.
• Do not use an R-22 TXV.
• If indoor unit is equipped with a TXV, it must be changed to an R-410A TXV.
• Never open system to atmosphere while it is under a vacuum.
• When system must be opened for service, break vacuum with dry nitrogen and replace filter driers.
• Do not vent R-410A into the atmosphere.
• Observe all **warnings, cautions, and bold** text.
• Do not use capillary tube indoor coils.