Carrier’s 19EX Hermetic 19EX Centrifugal Liquid Chillers operate with environmentally safe HFC-134a. These chillers combine industrial quality with superior efficiency in a packaged design to minimize system costs. The Carrier 19EX chiller features:

- Single-Piece Shipment and Modular Construction
- Hermetic, 2-Stage Compressor Design with Interstage Economizer
- Positive Pressure Design Using Environmentally Safe HFC-134a Refrigerant

Features/Benefits

The 19EX hermetic centrifugal liquid chiller features:

Single-piece factory package — The 19EX chiller is completely assembled in the factory and shipped in one piece to the jobsite. This allows each unit to be tested before delivery to the customer. It also ensures that every aspect of the unit meets stringent quality standards specified by Carrier. One-piece shipment eliminates costly and time consuming field assembly.

Modular construction — The cooler, compressor, condenser, and economizer/storage vessel assemblies are completely bolted together, making the 19EX chiller ideally suited for replacement projects where ease of disassembly and re-assembly at the job-site are essential.
Application flexibility — By providing a wide assortment of compressor and gear arrangements, the 19EX chiller is an efficient, quality package ideally suited for domestic chilled water, export chilled water, brine chilling, and ice making applications.

The 2-stage compressor features — The 2-stage compressor features a hermetic motor design in which the motor is sealed from the machine room. Cooling is accomplished by spraying liquid refrigerant on the motor windings. This highly efficient motor cooling method uses smaller motors than air-cooled designs of the same capacity. Thus, hermetic motors require less inrush current and are smaller and lighter than comparable air-cooled motors.

Lubrication system — This forced lubrication system consists of an electrically driven oil pump, filter, heater, and refrigerant-cooled or water-cooled oil cooler. It provides an adequate supply of oil to the transmission gears and all bearing surfaces during start-up, operation, and coast down. The electrically driven oil pump is supplied by a separate power line ensuring an adequate oil supply in the event of compressor power interruptions. A microprocessor-controlled oil heater prevents excessive absorption of refrigerant into the oil during compressor shutdown.

Variable inlet guide vanes — These vanes are connected with aircraft quality cable and controlled by a precise electronic actuator. Chilled water temperature is maintained within ± .5°F (±.3°C) of desired set point without surge, cavitation, or undue vibration. The vanes regulate inlet flow to provide high efficiency through a wide, stable operating range without hot gas bypass.

Double helical industrial type gears — Unlike single helical gears, double helical gears have a greater tooth-contact area which can transmit higher horsepower loads more smoothly. In addition, this design absorbs axial thrust loads that are generated in the transmission of power to ensure a long, dependable life for all components in the system.

Split-sleeve, steel back, babbitt-lined journal bearing — The 19EX chiller uses 2 steel back, babbitt-lined bearings on both sides of the thrust bearing to form a “fully supported” internal shaft. The steel backing provides structural strength for the bearing, while the babbitt material provides a superior bearing surface. The split-sleeve design facilitates bearing inspection without shaft removal. This makes for a very solid rotating assembly which reduces heat, wear, vibration, and the possibility of shaft failure.

Tilting pad, self-leveling, babbitt-lined, Kingsbury-type thrust bearing — The Kingsbury-type thrust bearing employs an expanded equalized surface that faces a rotating disc on the shaft. This surface is comprised of 8 pads made from babbitt. Each pad is supported by plates which give the pads a self-aligning nature, allowing for field adjustments. During operation, the pads take on a wedge-shape formation. This formation ensures that the load-carrying surfaces of the bearing are separated by a relatively thick film of lubricant, preventing metal-to-metal contact. In case of accidental reverse shaft rotation, the pads on the thrust bearing can realign themselves and form a wedge-shape in the opposite direction, consequently reducing wear and increasing bearing life.

Large inspection opening — Each compressor is equipped with an access cover to facilitate bearing and gear inspection without compressor disassembly. This makes the 19EX chiller ideal for yearly inspections and preventive maintenance programs.

Compressor run tested — Every compressor assembly is run-tested in accordance with stringent Carrier engineering requirements. These tests, performed prior to final machine assembly, ensure proper and reliable operation.

Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features/Benefits</td>
<td>1-7</td>
</tr>
<tr>
<td>Model Number Nomenclature</td>
<td>3</td>
</tr>
<tr>
<td>Options and Accessories</td>
<td>8</td>
</tr>
<tr>
<td>Machine Components</td>
<td>9</td>
</tr>
<tr>
<td>Physical Data</td>
<td>10</td>
</tr>
<tr>
<td>Dimensions</td>
<td>11</td>
</tr>
<tr>
<td>Performance Data</td>
<td>12</td>
</tr>
<tr>
<td>Electrical Data</td>
<td>13</td>
</tr>
<tr>
<td>Application Data</td>
<td>14-19</td>
</tr>
<tr>
<td>Controls</td>
<td>20-24</td>
</tr>
<tr>
<td>Typical Control Wiring</td>
<td>25-26</td>
</tr>
<tr>
<td>Typical Field Wiring</td>
<td>27-28</td>
</tr>
<tr>
<td>Typical Piping and Wiring</td>
<td>29</td>
</tr>
<tr>
<td>Guide Specifications</td>
<td>30-36</td>
</tr>
</tbody>
</table>
Model Description

19EX — Hermetic Centrifugal Liquid Chiller

Cooler Size

45, 48

Condenser Size

55, 57

Compressor Size

531 through 599

Gear Code

Model Number Nomenclature

- A
- B
- C

NIH — Nozzle-In-Head

Special Order Code

- — Standard
- S — Special Order

Waterbox Code

1 — Marine Waterbox Cooler/
Marine Waterbox Condenser
2 — Marine Waterbox Cooler/
NIH Waterbox Condenser
3 — NIH Waterbox Cooler/
Marine Waterbox Condenser
4 — NIH Waterbox Cooler/
NIH Waterbox Condenser

Motor Voltage

61 — 380-3-60
62 — 460-3-60
63 — 575-3-60
64 — 2400-3-60
65 — 3300-3-60
66 — 4160-3-60
67 — 6900-3-60

Motor Size

Hermetic Drive:

- DF DL EA
- DG DM EB
- DH DN EC
- DJ DP ED
- DK DQ EE

UNDERWRITERS’ LABORATORY CANADA

ASME ‘U’ STAMP

UNDERWRITERS’ LABORATORY

ARI (Air Conditioning and Refrigeration Institute) PERFORMANCE CERTIFIED
HEAT EXCHANGERS
- ASME stamp on both refrigerant and water-sides of heat exchangers for increased reliability
- Optional marine waterboxes eliminate disassembly of field piping, saving on service time during tube cleaning
- High-performance internally and externally enhanced tubes provide excellent heat transfer efficiencies
- Closely spaced intermediate support sheets prevent tube sagging and/or vibration
- Double-grooved tube sheets, with tubes rolled and expanded at both ends, provide leak-tight integrity
- Condenser impingement baffle eliminates tube vibration and increases heat exchanger efficiency
- Condenser thermal economizer increases refrigerant cycle efficiency

MICROPROCESSOR CONTROL SYSTEM
- Easy to read 16 line by 40 character LCD display
- “All in one glance” access to key chiller operating data simplifies machine-user interface
- Monitors over 100 functions and conditions for complete system control
- Displays over 125 operating and diagnostic conditions for the most detailed information available
- Carrier Comfort Network (CCN) compatibility provides a system solution to controls applications

FLASH ECONOMIZER/STORAGE VESSEL AND PUMPOUT UNIT
- Increases refrigeration effect and cycle efficiency
- Reliable float valves provide precise refrigerant flow control at any load condition
- Bolt-on covers allow for easy inspection
- Eliminates remote storage system
- Meets EPA standards
- Prevents refrigerant leakage
- Allows evacuation without operating main compressor
- Saves on service time

2-STAGE COMPRESSOR
- Hermetically sealed lubrication package provides adequate oil supply at start-up, operation, and coastdown
- Variable inlet guide vane capacity control provides stable operation without hot gas bypass
- Double helical gears transmit higher shaft load and eliminate gear thrust load
- Split sleeve, steel back, babbitt-lined journal bearings facilitate bearing inspection without shaft removal
- Tilting pad, self-leveling, babbitted Kingsbury-type thrust bearing absorbs axial thrust, increasing compressor life
- Large inspection opening facilitates bearing and gear inspection without compressor disassembly
- Water-cooled oil cooler
- Compressor is run-tested, ensuring proper and reliable operation
- Coastdown oil reservoir ensures proper lubrication during power outage shutdowns

19EX HERMETIC CENTRIFUGAL LIQUID CHILLER
- Single-piece modular construction makes the 19EX ideally suited for new construction, or replacement projects
- Hermetic or open drive 2-stage compressor design with interstage economizer increases refrigeration effect and cycle efficiency
- Positive pressure design uses environmentally safe HFC-134a refrigerant

SINGLE-PIECE MODULAR CONSTRUCTION
- Single-piece factory package eliminates field assembly on new construction projects, reducing installation expense
- Modular construction allows for field disassembly and re-assembly on replacement projects, also reducing installation expense
The heat exchangers feature:

Pressure-tested vessels — Each heat exchanger (water-side) is hydrostatically tested at 150% of design pressure. The entire machine assembly is pneumatically burst-tested at 125% of design pressure and then subjected to a standing vacuum test. This increases unit reliability and ensures safe machine operation.

ASME certified construction — ASME “U” stamp and nameplate on both the refrigerant and water-sides of the chiller for safety, reliability, and long life.

Marine waterboxes — The marine waterboxes, optional on both cooler and condenser, facilitate tube cleaning and eliminate the need to disassemble piping.

High-performance tubing — Heat exchanger tubes can be internally and externally enhanced for high efficiency. A wide range of alternate tube types and materials is available.

Double-grooved tube sheet holes — Tubing is rolled and expanded into double grooved tube sheets to eliminate the possibility of leaks between the water and refrigerant system.

Closely spaced intermediate support sheets — Tubes in the cooler and condenser are supported by closely spaced intermediate support sheets which prevent tubes from sagging and vibrating.

Tube expansion at intermediate support sheets — Because of the volatile environment in the cooler heat exchanger, tubes are expanded into each intermediate support sheet, preventing unwanted tube movement and vibration.

Condenser impingement baffle — This feature prevents direct impingement of high-velocity compressor discharge gas onto the condenser tubes. The baffle eliminates the related vibration and wear of the tubes and distributes the refrigerant flow evenly over the length of the vessel for improved efficiency.

Flash subcooler — The flash subcooler, located in the bottom of the condenser, brings warm condensed refrigerant into contact with the inlet (coldest) water tubes. This subcools the liquid to a temperature less than its condensing temperature. Therefore, the overall refrigeration cycle efficiency is increased, resulting in lower power consumption.

The flash economizer/storage vessel features:

Integrated economizer/storage vessel with pumpout unit — This system is self-contained, easy to operate, and more cost effective than remote storage options. As a self-contained unit, the 19EX chiller can be applied to applications that incorporate more than one type of refrigerant, without the cost penalty of requiring additional remote storage systems. Additionally, the optional pumpout compressor meets EPA’s vacuum level requirements that mandate minimizing refrigerant emissions during service.

Interstage flash economizer — The liquid refrigerant leaving the condenser passes through 2 pressure reducing devices in the economizer/storage vessel before reaching the cooler. After going through the first device, some of the liquid flashes because of the sudden drop in pressure. It is drawn off to the inlet of the compressor second stage, reducing the first stage weight flow and horsepower. As a result, the economizer increases refrigeration effect and cycle efficiency.

Ball-type float valves — These valves provide precise refrigerant metering at any load. As a result, optimal refrigerant levels can be maintained in the condenser and cooler to achieve the greatest efficiency without gas bypass or flooding.

Bolt-on covers — These covers allow access to the float valves to facilitate inspection.

Storage tank — This tank is sized so that the entire refrigerant charge occupies no more than 90% of the tank volume at 90°F (32°C). This feature reduces service work time, minimizes downtime, eliminates the additional space required for a separate tank, and eliminates the need for costly field-erected transfer piping.

Isolating valves — These valves isolate the integrated economizer/storage vessel from the condenser, cooler, and compressor during pump-out and servicing.

Microprocessor controls feature:

Direct digital Product Integrated Control (PIC) — The PIC provides unmatched flexibility and functionality. Each unit integrates directly with the Carrier Comfort Network (CCN) providing a system solution to controls applications.

Local Interface Device (LID) — This device, configured to display in either English or metric units, provides unparalleled ease of human interface. A 16-line by 40-character LCD (liquid crystal display) features 4, menu-specific, softkeys. The default display offers “all in one glance” access to key chiller operating data, simplifying machine-user interface.

Optional modules — These modules offer control expandability by allowing chilled water reset and demand limit set points to be controlled from remote sources. Optional temperature sensors can also be connected and monitored by these modules.

Modular pull-out/plug-in design — Plug design reduces wiring requirements for easy installation.

Low-voltage design — The Class 2 control center design provides the ultimate assurance of personal safety and control integrity.

Over 100 PIC monitoring functions and conditions — PIC displays over 125 operating, state, and diagnostic messages for improved user interface.

Battery backup — Battery backup provides protection during power failures, and eliminates time-consuming control reconfiguration.

Extensive service menu — The service menu can be password-protected to prevent unauthorized access. Built-in diagnostic capabilities aid troubleshooting and recommend proper corrective action for pre-set alarms resulting in greater uptime. The control test allows the user to confirm operation of inputs and outputs for increased confidence.

Automatic capacity override — This function unloads the compressor whenever key safety limits are approached, increasing unit life.

Encapsulated circuit board — Designed and built in-house, each board must meet Carrier’s stringent quality standards resulting in superior reliability compared to open board designs.

19EX refrigeration cycle

The machine compressor continuously draws large quantities of refrigerant vapor from the cooler, at a rate determined by the amount of guide vane opening. This compressor suction reduces the pressure within the cooler and causes the remaining refrigerant to boil vigorously at a low temperature, typically 35 to 40°F (2 to 4°C).
The energy required for boiling and is obtained from the water (or brine) flowing through the cooler tubes. When heat is removed, the chilled water (brine) can then be used for air conditioning or for process liquid cooling.

After removing heat from the water, the refrigerant vapor passes through the compressor’s first stage, is then compressed, and moves into the compressor’s second stage. In the second stage it is mixed with flash-economizer gas and is further compressed.

Compression raises the refrigerant temperature above the water temperature currently flowing through the condenser tubes. When the warm (typically 130°F to 160°F [54°C to 71°C]), refrigerant is discharged into the condenser, the relatively cool condensing water removes some of the heat and the vapor condenses to a liquid. Further removal of heat occurs in the flash subcooler at the bottom of the condenser. The liquid refrigerant passes through orifices into the flash subcooler chamber. Since the flash subcooler chamber is at a lower pressure, part of the liquid refrigerant flashes to vapor, thereby cooling the remaining liquid. The vapor in the flash subcooler is recondensed on the tubes which are cooled by entering condenser water.

The liquid refrigerant drains into the flash economizer/storage vessel where a valve system maintains pressure intermediate between the condenser and the cooler pressure. At this lower pressure, part of the liquid refrigerant flashes to a gas, thus cooling the remaining liquid. The flash gas is returned directly to the compressor. Here it is mixed with gas already compressed by the first-stage impeller. Since the economizer gas has to pass through only half of the compression cycle to reach condenser pressure, a saving in power is achieved, hence the term “economizer.”

The cooled liquid refrigerant in the economizer is metered through the low-side float chamber to the cooler. Since cooler pressure is lower than the economizer pressure, some of the liquid refrigerant flashes and cools the remaining refrigerant to cooler temperature. The cycle is now complete.

Three manual butterfly valves are provided to allow isolation of the refrigerant charge in the economizer/storage vessel during chiller service.
19EX COMPRESSOR COMPONENTS

LEGEND

1 — Variable Inlet Guide Vanes
2 — First-Stage Impeller
3 — Second-Stage Impeller
4 — Impeller Shaft Journal Bearing
5 — Thrust Bearing Assembly
6 — High-Speed Pinion
7 — Coastdown Reservoir
8 — Impeller Shaft Journal Bearing
9 — Motor
10 — Motor-End Journal Bearing
11 — Low Speed Bull Gear
12 — Motor Shaft Journal Bearing
13 — Oil Pump
14 — Oil Cooler
Options and accessories

<table>
<thead>
<tr>
<th>ITEM</th>
<th>OPTION*</th>
<th>ACCESSORY†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Insulation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>One, 2, or 3 Pass Heat Exchangers</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Automatic Hot Gas Bypass</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Controls Option Module</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>.028 or .035-in. Wall Copper Tubes, Internally Enhanced, Cooler or Condenser</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hinged Waterbox Covers</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Nozzle-In-Head, 300 psig (2068 kPa)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Marine Waterboxes, 150 psig (1034 kPa)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Marine Waterboxes, 300 psig (2068 kPa)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Flanged Water Nozzles, Cooler and/or Condenser</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Factory Performance Test</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pumpout Unit</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Flow Switches</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Soleplate Package</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Spring Isolators</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Spare Sensors with Leads</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sound Insulation Kit</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Control Options Module Upgrade Kit</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

* Factory installed. † Field installed.
ADDITIONAL COOLER WEIGHTS*

<table>
<thead>
<tr>
<th>COMPONENT FRAME</th>
<th>WATERBOX TYPE</th>
<th>NUMBER OF PASSES</th>
<th>DESIGN MAXIMUM WATER PRESSURE</th>
<th>ADDITIONAL DRY WEIGHT</th>
<th>ADDITIONAL WATER WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>psig</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>NIH</td>
<td>1, 3</td>
<td>150</td>
<td>1034</td>
<td>515</td>
<td>224</td>
</tr>
<tr>
<td>NIH</td>
<td>1, 3</td>
<td>300</td>
<td>2068</td>
<td>2041</td>
<td>1334</td>
</tr>
<tr>
<td>NIH</td>
<td>2</td>
<td>300</td>
<td>2068</td>
<td>2041</td>
<td>1334</td>
</tr>
<tr>
<td>NIH</td>
<td>1, 3</td>
<td>150</td>
<td>1034</td>
<td>2100</td>
<td>953</td>
</tr>
<tr>
<td>NIH</td>
<td>2</td>
<td>150</td>
<td>1034</td>
<td>792</td>
<td>359</td>
</tr>
<tr>
<td>NIH</td>
<td>1, 3</td>
<td>300</td>
<td>2068</td>
<td>3644</td>
<td>2314</td>
</tr>
<tr>
<td>NIH</td>
<td>2</td>
<td>300</td>
<td>2068</td>
<td>2536</td>
<td>1150</td>
</tr>
</tbody>
</table>

NIH — Nozzle-In-Head

ADDITIONAL CONDENSER WEIGHTS*

<table>
<thead>
<tr>
<th>COOLER FRAME</th>
<th>HEAT EXCHANGER SIZE</th>
<th>WATERBOX TYPE</th>
<th>NUMBER OF PASSES</th>
<th>DESIGN MAXIMUM WATER PRESSURE</th>
<th>ADDITIONAL DRY WEIGHT</th>
<th>ADDITIONAL WATER WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>psig</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>NIH</td>
<td>1</td>
<td>150</td>
<td>1034</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIH</td>
<td>1</td>
<td>300</td>
<td>2068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIH</td>
<td>2</td>
<td>300</td>
<td>2068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIH</td>
<td>1</td>
<td>150</td>
<td>1034</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIH</td>
<td>2</td>
<td>150</td>
<td>1034</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIH</td>
<td>2</td>
<td>150</td>
<td>1034</td>
<td>25</td>
<td>11</td>
<td>1734</td>
</tr>
</tbody>
</table>

NIH — Nozzle-In-Head

NIH WATERBOX COVER WEIGHTS

<table>
<thead>
<tr>
<th>HEAT EXCHANGER SIZE</th>
<th>PASSES</th>
<th>DESIGN MAXIMUM WATER PRESSURE</th>
<th>COOLER</th>
<th>CONDENSER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psig</td>
<td>kPa</td>
<td>lb</td>
<td>kg</td>
</tr>
<tr>
<td>45, 48</td>
<td>1</td>
<td>150</td>
<td>1034</td>
<td>2997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>2068</td>
<td>4225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>2068</td>
<td>4188</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>150</td>
<td>1034</td>
<td>3035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>2068</td>
<td>4244</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>150</td>
<td>1034</td>
<td>2032</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>2068</td>
<td>2940</td>
</tr>
<tr>
<td></td>
<td>2†</td>
<td>150</td>
<td>1034</td>
<td>2649</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>2068</td>
<td>3640</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>150</td>
<td>1034</td>
<td>2649</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>2068</td>
<td>3640</td>
</tr>
</tbody>
</table>

NIH — Nozzle-In-Head

MARINE WATERBOX COVER WEIGHTS

<table>
<thead>
<tr>
<th>HEAT EXCHANGER SIZE</th>
<th>DESIGN MAXIMUM WATER PRESSURE</th>
<th>COOLER</th>
<th>CONDENSER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psig</td>
<td>kPa</td>
<td>lb</td>
</tr>
<tr>
<td>45, 48</td>
<td>150</td>
<td>1034</td>
<td>2236</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>2068</td>
<td>3060</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>1034</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>2068</td>
<td>—</td>
</tr>
</tbody>
</table>

* The 150 psig (1034 kPa) waterbox cover weights are included in the dry weight shown in the 19EX Heat Exchanger, Economizer/Storage Vessel, Piping, and Pumpout Unit Weights table above.

† Two different waterbox covers are present on 2-pass machines. The weight shown in this table represents the weight of the waterbox cover that contains the nozzles. A blank waterbox cover is also present on 2-pass units. The weight of the blank waterbox cover is identical to the weight of the same size marine waterbox cover. Refer to the Marine Waterbox Cover Weight table above.
NOTES:
1. Certified drawings available upon request.
2. Service access should be provided per American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) 15, latest edition, National Fire Protection Association (NFPA) 70, and local safety codes.

SERVICE CLEARANCES

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>D (DIAMETER)</th>
<th>E (LENGTH)</th>
<th>F (DIAMETER)</th>
<th>G (LENGTH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor DF - DQ</td>
<td>1-11 1/4</td>
<td>591</td>
<td>3-7 1/2</td>
<td>1105</td>
</tr>
<tr>
<td>Motor EA - ED</td>
<td>2-2 3/4</td>
<td>679</td>
<td>3-10 1/4</td>
<td>1175</td>
</tr>
<tr>
<td>Motor EE</td>
<td>2-2 3/4</td>
<td>679</td>
<td>4-1 1/4</td>
<td>1251</td>
</tr>
<tr>
<td>Low-Side Float</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

NOZZLE SIZES

<table>
<thead>
<tr>
<th>HEAT EXCHANGER</th>
<th>NOZZLE TYPE</th>
<th>NOZZLE SIZES (in.) **</th>
</tr>
</thead>
<tbody>
<tr>
<td>45, 48</td>
<td>Marine</td>
<td>Cooler Passes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>NIH</td>
<td>18</td>
</tr>
<tr>
<td>55, 57</td>
<td>Marine</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>NIH</td>
<td>—</td>
</tr>
</tbody>
</table>

LEGEND
NIH — Nozzle-In-Head
* Distance required for tube removal may be either end.
† Based on 2-pass, nozzle-in-head (NIH) waterboxes with 150 psi (1038 kPa) covers.
** The table at right provides additional information on nozzle sizes. Victaulic grooves are standard for these nozzles. Optional 150 psi (1034 kPa) and 300 psi (2068 kPa) flanges are available.
†† In conformance with ASA B 36.10 (American Standards Association).

NOMINAL PIPE SIZE (in.)	SCHEDULE††	WALL THICKNESS
10 | 40 | .365 | 9.27 |
12 | Std | .375 | 9.53 |
14 | 30 | .375 | 9.53 |
16 | Std | .375 | 9.53 |
18 | Std | .375 | 9.53 |
20 | 20 | .375 | 9.53 |
Computerized ratings
Since Carrier's 19EX chiller has numerous component combinations and is able to fulfill a wide variety of required operating conditions, it is impractical to provide tabular performance information. Tabulated performance ratings predict "typical" chiller performance. Actual chiller performance may vary significantly at actual operating conditions and as chiller components are optimized around these conditions.

Computerized performance ratings are available through your local Carrier sales representative. These ratings are custom matched to meet project-specific operating conditions and energy efficiency requirements.

ARI Certification Program
The computerized performance ratings of the Carrier 19EX chillers are certified by the Air Conditioning and Refrigeration Institute (ARI). The Certification Program requires that the manufacturer's ratings be regularly checked for accuracy through a program of chiller testing in strict compliance with ARI Standard 550. This independent verification provides assurance of chiller performance.

Electrical data

AUXILIARY RATINGS

<table>
<thead>
<tr>
<th>POWER SOURCE</th>
<th>ITEM</th>
<th>AVERAGE kW</th>
<th>DESIGN CENTER VOLTAGE</th>
<th>SUPPLY V-PH-HZ</th>
<th>FLA</th>
<th>LRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control Module and Actuator</td>
<td>0.40</td>
<td>115</td>
<td>115-1-60</td>
<td>3.50</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Oil Sump Heater</td>
<td>1.0</td>
<td>115</td>
<td>115-1-60</td>
<td>8.70</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>Oil Pump</td>
<td>1.35</td>
<td>220</td>
<td>200/240-3-60</td>
<td>4.32</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.30</td>
<td>430</td>
<td>380/480-3-60</td>
<td>2.15</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.37</td>
<td>563</td>
<td>507/619-3-60</td>
<td>2.13</td>
<td>25.0</td>
</tr>
<tr>
<td>3 (Optional)</td>
<td>Pumpout Compressor</td>
<td>3.41</td>
<td>204</td>
<td>200/208-3-60</td>
<td>10.90</td>
<td>63.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>230</td>
<td>220/240-3-60</td>
<td>9.50</td>
<td>57.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>460</td>
<td>440/480-3-60</td>
<td>4.70</td>
<td>28.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>575</td>
<td>550/600-3-60</td>
<td>3.80</td>
<td>23.0</td>
</tr>
</tbody>
</table>

LEGEND
FLA — Full Load Amps
LRA — Locked Rotor Amps
NOTE: The oil pump is powered through a field wiring terminal into the power panel, see Machine Components section. Power to the controls and oil heater via the power panel must be on circuits that can provide continuous service when the compressor starter is disconnected.

Compressor motor controllers
Compressor motors, as well as controls and accessories, require the use of starting equipment systems specifically designed for 19 Series Chillers. See starting equipment publications or consult Carrier regarding design information for selection of controllers.

Capacitors and power factors
Power factor considerations may indicate the need to use capacitors. Properly sized capacitors improve power factors, especially at part-load. Contact your local Carrier sales office for further information on power factors.
LOW-VOLTAGE HERMETIC MOTORS — 60 Hz

<table>
<thead>
<tr>
<th>MOTOR SIZE</th>
<th>MAX kW</th>
<th>VOLTS*</th>
<th>380 V</th>
<th>460 V</th>
<th>575 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>478</td>
<td>FLA per kW</td>
<td>1.71</td>
<td>1.42</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>1265</td>
<td>1056</td>
<td>838</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>3952</td>
<td>3300</td>
<td>2620</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.67</td>
<td>1.38</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>1237</td>
<td>1179</td>
<td>946</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>3867</td>
<td>3684</td>
<td>2956</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.68</td>
<td>1.38</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>1583</td>
<td>1311</td>
<td>1008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>4945</td>
<td>3533</td>
<td>3151</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.68</td>
<td>1.38</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>1593</td>
<td>1181</td>
<td>944</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>4977</td>
<td>3690</td>
<td>2951</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.69</td>
<td>1.41</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>1680</td>
<td>1452</td>
<td>1037</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>5249</td>
<td>4537</td>
<td>3239</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.68</td>
<td>1.39</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>1905</td>
<td>1692</td>
<td>1354</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>5953</td>
<td>5287</td>
<td>4231</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.68</td>
<td>1.39</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>2068</td>
<td>1895</td>
<td>1292</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>6463</td>
<td>5920</td>
<td>4036</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.67</td>
<td>1.38</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>2269</td>
<td>1811</td>
<td>1449</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>7091</td>
<td>5659</td>
<td>4528</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.68</td>
<td>1.39</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>2243</td>
<td>1871</td>
<td>1468</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>7010</td>
<td>5846</td>
<td>4587</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.37</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>2290</td>
<td>1843</td>
<td>1143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>7157</td>
<td>5758</td>
<td>4340</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.37</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>2510</td>
<td>2037</td>
<td>1407</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>7844</td>
<td>6366</td>
<td>4828</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.37</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>2780</td>
<td>2304</td>
<td>1671</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>8687</td>
<td>7201</td>
<td>5428</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.36</td>
<td>1.09</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>3121</td>
<td>2248</td>
<td>1671</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>9753</td>
<td>7024</td>
<td>5428</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>1.36</td>
<td>1.09</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>3724</td>
<td>2028</td>
<td>1671</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>11637</td>
<td>9463</td>
<td>7201</td>
</tr>
</tbody>
</table>

LEGEND

FLA per kW — Full Load Amps per kW Input
LRA — Locked Rotor Amps
OLTA — Overload Trip Amps
RLA — Rated Load Amps

*Motor FLA = listed FLA x listed voltage
Motor LRA = listed LRA x selected voltage

NOTE: To establish electrical data for your selected voltage, if other than listed voltage, using the following formulas:

Motor FLA = listed FLA x listed voltage

OLTA = 1.08 x corrected RLA

LRA = listed LRA x selected voltage

EXAMPLE: Find the full load amperage for a motor listed at 1.12 amps per kW input and 550 volts.

Motor FLA = 1.12 x 575 = 1.17

MEDIUM AND HIGH-VOLTAGE HERMETIC MOTORS — 60 Hz

<table>
<thead>
<tr>
<th>MOTOR SIZE</th>
<th>MAX kW</th>
<th>VOLTS*</th>
<th>2400 V</th>
<th>3300 V</th>
<th>4160 V</th>
<th>6900 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF</td>
<td>453</td>
<td>FLA per kW</td>
<td>0.27</td>
<td>0.20</td>
<td>0.16</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>570</td>
<td>435</td>
<td>329</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>636</td>
<td>440</td>
<td>367</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>0.28</td>
<td>0.20</td>
<td>0.16</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>704</td>
<td>496</td>
<td>406</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>719</td>
<td>522</td>
<td>415</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>0.27</td>
<td>0.20</td>
<td>0.16</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>711</td>
<td>553</td>
<td>410</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>824</td>
<td>590</td>
<td>476</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>0.27</td>
<td>0.19</td>
<td>0.15</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>1034</td>
<td>782</td>
<td>597</td>
<td>409</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>1088</td>
<td>795</td>
<td>628</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>0.27</td>
<td>0.19</td>
<td>0.15</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>1192</td>
<td>851</td>
<td>688</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>1407</td>
<td>1066</td>
<td>812</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>0.26</td>
<td>0.19</td>
<td>0.15</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>1646</td>
<td>1171</td>
<td>950</td>
<td>538</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>1784</td>
<td>1293</td>
<td>1029</td>
<td>605</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLA per kW</td>
<td>0.26</td>
<td>0.19</td>
<td>0.15</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Star</td>
<td>1741</td>
<td>1362</td>
<td>1005</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LRA Delta</td>
<td>2358</td>
<td>1699</td>
<td>1363</td>
<td>1005</td>
</tr>
</tbody>
</table>

NOTE: To establish electrical data for your selected voltage, if other than listed voltage, using the following formulas:

Motor FLA = listed FLA x listed voltage
OLTA = 1.08 x corrected RLA
LRA = listed LRA x selected voltage

EXAMPLE: Find the full load amperage for a motor listed at 1.12 amps per kW input and 550 volts.

Motor FLA = 1.12 x 575 = 1.17

590
Range of application
The 19EX refrigeration machine is designed for standard water chilling applications using HFC-134a.

ASME stamping
All 19EX heat exchangers are constructed in accordance with ASHRAE 15 (American Society of Heating, Refrigeration, and Air Conditioning Engineers) Safety Code for Mechanical Refrigeration (latest edition). This code, in turn, requires conformance with ASME (American Society of Mechanical Engineers) Code for Unfired Pressure Vessels whenever applicable. As a consequence, all 19EX heat exchangers are affixed with an ASME “U” stamp on both the water side and the refrigerant side to certify compliance with ASME Section VIII, Division 1 Code for Unfired Pressure Vessels.

Design pressure
Design and test pressures for 19EX heat exchangers are listed below.

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>DESIGN PRESSURE</th>
<th>HYDROSTATIC PRESSURE</th>
<th>AIR TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHELL SIDE</td>
<td>psi</td>
<td>kPa</td>
<td>psi</td>
</tr>
<tr>
<td>(Refrigerant) Cooler</td>
<td>225</td>
<td>1551</td>
<td>—</td>
</tr>
<tr>
<td>Condenser</td>
<td>225</td>
<td>1551</td>
<td>281</td>
</tr>
<tr>
<td>TUBE SIDE*</td>
<td>psi</td>
<td>kPa</td>
<td>psi</td>
</tr>
<tr>
<td>(Water) Cooler</td>
<td>150</td>
<td>1034</td>
<td>225</td>
</tr>
<tr>
<td>Condenser</td>
<td>150</td>
<td>1034</td>
<td>225</td>
</tr>
<tr>
<td>Economizer/Storage Vessel</td>
<td>225</td>
<td>1551</td>
<td>281</td>
</tr>
</tbody>
</table>

*Indicates 150 psig (1034 kPa) waterside construction.

Insulation Requirements

<table>
<thead>
<tr>
<th>THERMAL INSULATION REQUIREMENTS</th>
<th>FOAM TUBING INSULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>FT</td>
</tr>
<tr>
<td>1 1/4” Foam Tubing</td>
<td>9</td>
</tr>
<tr>
<td>1 5/8” Foam Tubing</td>
<td>2</td>
</tr>
<tr>
<td>2” Foam Tubing</td>
<td>9</td>
</tr>
<tr>
<td>5” Foam Tubing</td>
<td>14</td>
</tr>
</tbody>
</table>

NOTES:
1. Cooler value includes marine waterbox on one end (even-pass arrangement).
2. Values are approximate.
3. Thermal insulation is available as a factory-installed option. Waterbox insulation must be field supplied.

Insulation at jobsite — The Condensation versus Relative Humidity table indicates the degree of surface condensation that will occur for specific conditions of temperature and relative humidity. Carrier recommends that insulation be added to the cooler waterboxes (including the tube sheet) and suction elbow if the actual operating conditions would cause condensation.

Insulation of the cooler waterboxes should allow for service access and removal of covers.

The recommended insulation is 3/4 in. (19 mm) thick closed-cell neoprene with a thermal conductivity K value of 0.28 \(\text{Btu} \cdot \text{in.} / \text{hr} \cdot \text{ft}^2 \cdot \circ\text{F} \) (0.0404 \(\text{W} / \text{m} \cdot \circ\text{C} \)). Insulation should conform with UL (Underwriters’ Laboratories) Standard 94 and have classification 94 HBF.

Factory insulation (optional) — Optional factory insulation is available for the evaporator shell and tube sheets, suction pipe, compressor motors, economizer low side, and refrigerant drain line(s). Insulation applied at the factory is 3/4 in. (19 mm) thick and has a thermal conductivity K value of 0.28 \(\text{Btu} \cdot \text{in.} / \text{hr} \cdot \text{ft}^2 \cdot \circ\text{F} \) (0.0404 \(\text{W} / \text{m} \cdot \circ\text{C} \)). Insulation should conform with UL Standard 94 and have classification 94 HBF.

CONDENSATION VS RELATIVE HUMIDITY*

<table>
<thead>
<tr>
<th>AMOUNT OF CONDENSATION</th>
<th>ROOM DRY-BULB TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80 F (27 C)</td>
</tr>
<tr>
<td>% Relative Humidity</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>80</td>
</tr>
<tr>
<td>Slight</td>
<td>87</td>
</tr>
<tr>
<td>Extensive</td>
<td>94</td>
</tr>
</tbody>
</table>

*These approximate figures are based on 35 F (1.7 C) saturated suction temperature. A 2 F (1.1 C) change in saturated suction temperature changes the relative humidity values by 1% in the same direction.
Vent and drain connections
All vent and drain connections are found in the waterbox shell. Vent and drain connection size is 1-in. NPT.

Provide high points of the machine piping system with vents and the low points with drains. If shutoff valves are provided in the main water pipes near the unit, a minimum amount of system water is lost when the heat exchangers are drained. This reduces the time required for drainage and saves on the cost of re-treating the system water.

It is recommended that pressure gages be provided at points of entering and leaving water to measure pressure drop through the heat exchanger. Gages may be installed as shown in the Pressure Gage Location table. Pressure gages installed in the vent and drain connections do not include nozzle pressure losses.

Use a reliable manometer to measure pressure differential when determining water flow. Regular gages are insensitive and do not provide accurate measurement of flow conditions.

Refrigerant temperature sensors
All 19EX chillers are supplied with evaporator and condenser temperature sensors.

Thermometers
Recommended ranges for water temperature thermometers are:
- Entering and leaving chilled water/brine, 20 F to 80 F (−7 to 27 °C);
- Entering and leaving condenser water, 30 F to 120 F (−1 to 49 °C)

Thermometers for measuring chilled water and condensing water temperatures are field purchased, as required, for individual jobs. It is recommended that thermometer wells be provided in cooler and condenser water piping. Wells in the leaving water pipes should be 6 to 10 pipe diameters from the waterboxes. This provides sufficient distance for complete mixing of water as it leaves the heat exchanger tubes. Extend thermometers into pipe at least 2 in. (51 mm).

Relief devices
The 19EX chiller is equipped with standard relief valves. The quantity of devices and the outlet connection size of each valve is listed in the Relief Valve Data table below.

Relief-valve discharge piping sizing should be calculated per the current version of the ASHRAE 15 code using the tabulated C-factors in the Relief-Valve Discharge Piping table shown below.

Carrier further recommends that an oxygen sensor be installed to protect personnel. The sensor should be of a type that senses the depletion or displacement of oxygen in the machine room below 19.5% volume oxygen per ASHRAE 15, latest edition.

AUXILIARY CONNECTIONS

<table>
<thead>
<tr>
<th>PRESSURE GAGE LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF PASSES</td>
</tr>
<tr>
<td>(Cooler or Condenser)</td>
</tr>
<tr>
<td>1 and 3</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NUMBER OF PASSES</th>
<th>GAGE LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cooler or Condenser)</td>
<td></td>
</tr>
<tr>
<td>1 and 3</td>
<td>One gage in each waterbox.</td>
</tr>
<tr>
<td>2</td>
<td>Two gages in waterbox with nozzles</td>
</tr>
</tbody>
</table>

RELIEF VALVE DATA

<table>
<thead>
<tr>
<th>RELIEF VALVE LOCATION</th>
<th>OUTLET SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/4 in. FPT</td>
<td>3/8 in. Male Flare</td>
</tr>
<tr>
<td>No. of Valves</td>
<td></td>
</tr>
<tr>
<td>COOLER</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECONOMIZER/STORAGE VESSEL</td>
<td></td>
</tr>
<tr>
<td>2*</td>
<td></td>
</tr>
<tr>
<td>PUMPOUT UNIT CONDENSER</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

*To ensure relief valve serviceability, and as required in ASHRAE 15 (American Society of Heating, Refrigeration, and Air Conditioning Engineers), latest edition, three-way valves and redundant relief valves are installed on the storage vessel. Only one half of the “No. of Valves” listed are in service at any time.
NOTES:
1. The cooler relief C-factor is for both cooler and condenser vented through the cooler in accordance with ASHRAE 15 (American Society of Heating, Refrigeration and Air Conditioning Engineers).
2. Relief valve discharge pipe sizing is to be calculated per latest version of ASHRAE 15, using the tabulated C-factors and nominal pipe size listed above. Cooler and economizer/storage vessel rated relief valve pressure is 225 psig (1551 kPa).
3. The pumpout unit condenser contains less than 110 lb (50 kg) of HFC-134a, which is a Group A1 refrigerant. The ASHRAE 15 standard exempts small-volume vessels from the requirement to vent outside. However, Carrier recommends that the pumpout condenser be connected to the rest of the vent system.

<table>
<thead>
<tr>
<th>RELIEF VALVE LOCATION</th>
<th>REQUIRED C FACTOR</th>
<th>NOMINAL OUTLET PIPE SIZE (in.)</th>
<th>RATED RELIEF PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb air/min.</td>
<td>kg air/sec.</td>
<td>psig</td>
</tr>
<tr>
<td>Cooler</td>
<td>228.5</td>
<td>1.73</td>
<td>1 1/4 FPT</td>
</tr>
<tr>
<td>Economizer/Storage Vessel</td>
<td>84.3</td>
<td>0.64</td>
<td>1 1/4 FPT</td>
</tr>
<tr>
<td>Pumpout Unit Condenser</td>
<td>1.5</td>
<td>0.01</td>
<td>3/4 in. Male Flare MPT</td>
</tr>
</tbody>
</table>

HEAT EXCHANGER MINIMUM/MAXIMUM FLOW RATES*

ENGLISH (Gpm)

<table>
<thead>
<tr>
<th>FRAME SIZE</th>
<th>COOLER SIZE</th>
<th>1 PASS</th>
<th>2 PASS</th>
<th>3 PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>2710</td>
<td>10,842</td>
<td>1355</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>4265</td>
<td>17,058</td>
<td>2132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FRAME SIZE</th>
<th>COOLER SIZE</th>
<th>1 PASS</th>
<th>2 PASS</th>
<th>3 PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>171</td>
<td>684</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>269</td>
<td>1076</td>
<td>135</td>
</tr>
</tbody>
</table>

ENGLISH (Gpm)

<table>
<thead>
<tr>
<th>FRAME SIZE</th>
<th>CONDENSER SIZE</th>
<th>1 PASS</th>
<th>2 PASS</th>
<th>3 PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>3660</td>
<td>14,640</td>
<td>1830</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>4511</td>
<td>18,042</td>
<td>2255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FRAME SIZE</th>
<th>CONDENSER SIZE</th>
<th>1 PASS</th>
<th>2 PASS</th>
<th>3 PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>231</td>
<td>924</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>265</td>
<td>1138</td>
<td>142</td>
</tr>
</tbody>
</table>

* Flow rates based on .025 in. wall tubing in the cooler and condenser. Minimum flow based on tube velocity of 3 ft/sec (0.9 m/sec); maximum based on 12 ft/sec (3.6 m/sec).
NOTES:
1. Dimensions in () are in mm.
2. 1 inch = 25.4 mm.
3. All dimensions approximately ± 1/2 inch.
MACHINE CONTACT SURFACES (cont)

SOLEPLATE ISOLATION

FIELD-INSTALLED ACCESSORY ISOLATION

SOLEPLATE DETAIL

SECTION A-A

NOTES:
1. Dimensions in () are in millimeters.
2. Accessory Soleplate Package includes 4 soleplates, 16 jacking screws and leveling pads. Requires isolation package.
3. Jacking screws to be removed after grout has set.
4. Thickness of grout will vary, depending on the amount necessary to level chiller. Use only pre-mixed non-shrinking grout, Celcote HT-648 or Master Builders 636, 0' - 1 1/2" (38.1) to 0' - 2 1/4" (57) thick.

TYPICAL ISOLATION

FIELD-INSTALLED ACCESSORY ISOLATION

SOLEPLATE DETAIL

SECTION A-A

NOTES:
1. Dimensions in () are in millimeters.
2. Accessory Soleplate Package includes 4 shear flex pads.
3. Jacking screws to be removed after grout has set.
4. Thickness of grout will vary, depending on the amount necessary to level chiller. Use only pre-mixed non-shrinking grout, Celcote HT-648 or Master Builders 636, 0' - 1 1/2" (38.1) to 0' - 2 1/4" (57) thick.

STANDARD ISOLATION

VIEW B-B

NOTES: Isolation package includes 4 shear flex pads.
NOZZLE ARRANGEMENTS

NOZZLE-IN-HEAD WATERBOXES

NOTES:
1. The vents for these waterboxes, located in the covers are 1 in. FPT at the top of each box, and the drains are 1 in. FPT, at the bottom.
2. Victaulic connections are standard.
3. Flanged waterbox connections are optional.

COOLER WATERBOX

<table>
<thead>
<tr>
<th>Pass</th>
<th>In</th>
<th>Out</th>
<th>Arr. Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>9</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>6</td>
<td>E</td>
</tr>
</tbody>
</table>

CONDENSER WATERBOX

<table>
<thead>
<tr>
<th>Pass</th>
<th>In</th>
<th>Out</th>
<th>Arr. Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>12</td>
<td>R</td>
</tr>
</tbody>
</table>

NOTES:
1. The vents for these waterboxes are 1 in. FPT at the top of each box, and the drains are 1 in. FPT, at the bottom.
2. Victaulic connections are standard.
3. Flanged waterbox connections are optional.

COOLER WATERBOX

<table>
<thead>
<tr>
<th>Pass</th>
<th>In</th>
<th>Out</th>
<th>Arr. Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>9</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>6</td>
<td>E</td>
</tr>
</tbody>
</table>

CONDENSER WATERBOX

<table>
<thead>
<tr>
<th>Pass</th>
<th>In</th>
<th>Out</th>
<th>Arr. Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>12</td>
<td>R</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>15</td>
<td>Y</td>
</tr>
</tbody>
</table>

NOTES:
1. The vents for these waterboxes are 1 in. FPT at the top of each box, and the drains are 1 in. FPT, at the bottom.
2. Victaulic connections are standard.
3. Flanged waterbox connections are optional.
Microprocessor controls

Microprocessor controls provide the safety, interlock, capacity control, and indications necessary to operate the chiller in a safe and efficient manner.

Control system

The microprocessor control on each Carrier centrifugal system is factory mounted, wired, and tested to ensure machine protection and efficient capacity control. In addition, the program logic ensures proper starting, stopping, and recycling of the machine and provides a communications link to the Carrier Comfort Network (CCN).

Features

Control system

Component Test and Diagnostic Check
Menu-Driven Keypad Interface for Status Display, Set Point Control, and System Configuration
CCN Compatible
Primary and Secondary Status Messages
Individual Start/Stop Schedules for Local and CCN Operation Modes
Recall of Up to 25 Alarm/Alert Messages with Diagnostic Help
Automatic 2 Chiller Lead/Lag with Integral Standby Controls
Ice Build Time Schedule/Setpoint Control Soft Stop Control

Safety cutouts

Bearing Oil High Temperature
Motor High Temperature†
Refrigerant (Condenser) High Pressure*†
Refrigerant (Cooler) Low Temperature*†
Lube Oil Low Pressure**
Compressor (Refrigerant) Discharge Temperature*
Under Voltage**
Over Voltage**
Oil Pump Motor Overload
Cooler and Condenser Water Flow††
Motor Overload†
Excess Acceleration Time
Intermittent Power Loss||
Compressor Starter Faults
Compressor Surge Protection¶
Single Cycle Dropout

Capacity Control

Leaving Chilled Water Control
Entering Chilled Water Control
Soft Loading Control by Temperature or Load Ramping
Guide Vane Actuator Modulation
Hot Gas Bypass Valve
Power (Demand) Limiter
Auto. Chilled Water Reset

Interlocks

Manual/Automatic Remote Start
Starting/Stopping Sequence
Pre-Lube/Post-Lube
Pre-Flow/Post-Flow
Compressor Oil Pump Interlock
Starter Run Interlock
Pre-Start Check of Safeties and Alerts
Low Chilled Water (Load) Recycle
Monitor/Number Compressor Starts and Run Hours
Manual Reset of Safeties
Condenser Low Pressure*

Indications

Chiller Operating Status Message
Power-On
Pre-Start Diagnostic Check
Compressor Motor Amps
Pre-Alarm Alert*
Alarm
Contact for Remote Alarm
Safety Shutdown Messages
Elapsed Time (Hours of Operation)
Chiller Input kW***

* These can be configured by user to provide alert indication at user-defined limit.
† Override protection: Causes compressor to first unload and then, if necessary, shut down.
** Alert limit pre-configured. Non-adjustable.
†† Required: Field or factory supplied flow switch (installed at jobsite).
|| Will not require manual reset or cause an alarm if auto-restart after power failure is enabled.
¶ These can be configured by user to provide alarm shutdown at user-defined limit.
*** kW transducer must be supplied in motor starter.
1 — Processor Module (PSIO). The PSIO is the Brain of the Product Integrated Controls
2 — Optional 8-Input Module for Spare Inputs to Control Interface (one of two available)
3 — Local Interface Device (LID Input/Output Interface Panel Display)
4 — Power Transformer
5 — 6-Pack Relay Board
6 — Circuit Breakers (4)
Default Display

Displays information most commonly required for chiller operating logs. Two line system status messages inform the operator of mode of operation or any alert or alarm messages. The four “softkeys” allow access to other control functions.

Status Screens

The screens display readings of every point monitored by the microprocessor. Cooler, condenser, and oil pressure are included in the status screens.

Schedule Screen

A user-established occupancy schedule can easily be configured for your particular application. A 365-day, real time, battery backed up clock will automatically start and stop the chiller according to your established schedule, or per the building master schedule in CCN system.

Set Point Screen

The chilled water and demand limit set points can be entered, stored, viewed, or changed easily from this screen.

LOCAL INTERFACE DEVICE (LID) TYPICAL DISPLAY PANELS

<table>
<thead>
<tr>
<th>Control Mode</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupied?</td>
<td>YES</td>
</tr>
<tr>
<td>Alarm State</td>
<td>NORMAL</td>
</tr>
<tr>
<td>Chiller Start/Stop</td>
<td>START</td>
</tr>
<tr>
<td>Base Demand Limit</td>
<td>100%</td>
</tr>
<tr>
<td>Active Demand Limit</td>
<td>100%</td>
</tr>
<tr>
<td>Compressor Motor: Lead</td>
<td>87%</td>
</tr>
<tr>
<td>Current</td>
<td>87%</td>
</tr>
<tr>
<td>Amps</td>
<td>174 AMPS</td>
</tr>
<tr>
<td>Target Guide Vane Pos</td>
<td>85.0%</td>
</tr>
<tr>
<td>Actual Guide Vane Pos</td>
<td>84.5%</td>
</tr>
<tr>
<td>NEXT</td>
<td>PREVIOUS</td>
</tr>
</tbody>
</table>

EF/EX/FA CHLR

<table>
<thead>
<tr>
<th>OCC PC01S</th>
<th>PERIOD</th>
<th>TIME PERIOD SELECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERIOD</td>
<td>ON OFF</td>
<td>M W T F S S H</td>
</tr>
<tr>
<td>1</td>
<td>0700</td>
<td>1800</td>
</tr>
<tr>
<td>2</td>
<td>2200</td>
<td>0700</td>
</tr>
<tr>
<td>3</td>
<td>1200</td>
<td>1500</td>
</tr>
<tr>
<td>4</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>5</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>6</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>7</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>8</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>OVERRIDE</td>
<td>0 HOURS</td>
<td></td>
</tr>
</tbody>
</table>

EF/EX/FA CHLR

<table>
<thead>
<tr>
<th>SETPOINT</th>
<th>SETPOINT SELECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCW Setpoint</td>
<td>50.0 °F</td>
</tr>
<tr>
<td>ECW Setpoint</td>
<td>60.0 °F</td>
</tr>
</tbody>
</table>

NEXT | PREVIOUS | SELECT | EXIT
Service Screens — The password protected service screens provide an array of information available to configure the chiller for your particular application and troubleshoot any problems that may occur.

Alarm History File — Stores last 25 alarms or alerts that have occurred along with time and date indication. Allows service technician to quickly review alarm or alert history to identify problems that exist, as well as action required to resolve the problem.

Service Configuration Screens — Allow configuration of the controls for your particular application and setting override and alert levels for several points monitored by the control system.

Control Test Screen — Allows access to the various controls tests available to the service technician to quickly identify sources of problems and to get the chiller back on line rapidly.
Control sequence

To start: Local start-up (manual start-up) is initiated by pressing the LOCAL menu softkey which is indicated on the default local interface device (LID) screen. Time schedule 01 must be in the Occupied mode and the internal 15-minute start-to-start and the 1-minute stop-to-start inhibit timers must have expired. All pre-start alerts are checked to verify that they are within limits. If not, start-up is delayed and the reason is displayed until conditions are within limits. All safeties are checked to verify that they are confirmed within limits (if one is not within the specific limits, an indication of the fault will be displayed and the start aborted). The signal is sent to start the chilled water pump. Five seconds later, the condenser water pump is energized, and the tower fan control is enabled. One minute later the controls check to see if flow has been confirmed by the closure of the chilled water and condenser water flow switches. If not confirmed, it will continue to monitor flows for a maximum of 5 minutes. When confirmed, it checks the chilled water temperature against the control point. If the temperature is less than or equal to the control point, the condenser water pump will turn off and the controls will go into a recycle mode.

If the water/brine temperature is high enough the start-up sequence continues and checks the guide vane position. If the guide vanes are more than 6% open, start-up will not occur until the vanes are closed. If the vanes are closed and the oil pump pressure is less than 3 psi (21 kPa), the oil pump will be energized. The controls will wait 15 seconds for the oil pressure to reach 15 psi (103 kPa). After oil pressure is verified, the controls wait 10 seconds. The compressor start relay is then energized to start the compressor. Compressor ontime and service ontime “timers” start, the starts-in-12 hours counter advances by one, and the 15-minute start-to-start timer will start 10 seconds after oil pressure was verified.

Once started: The controls will enter the ramp loading mode to slowly open the guide vanes to prevent a rapid increase in compressor power consumption. Once completed, the controls will enter the capacity control mode. Any failure after the compressor is energized that results in a safety shutdown will energize the alarm light and display the applicable shutdown status on the local interface device (LID) display screen.

Shutdown sequence: Shutdown of the chiller can occur if any of the following events happen:
- The stop button is pressed for at least one second
- A recycle shutdown was initiated
- Time schedule has gone into unoccupied mode
- Machine or starter protective limit has been reached and machine is in alarm
- The start/stop status is overridden to stop from the CCN network or LID

Once the controls are placed in shutdown mode, the shutdown sequence first stops the compressor by deactivating the start relay. The guide vanes are then brought to the closed position. Compressor ontime and service ontime stop. The stop-to-start will now start to count down. The oil pump relay and chilled water/brine pump are shut down 60 seconds after the compressor stops. The condenser water pump will be shut down when the refrigerant temperature or entering condenser water are below preestablished limits.

If the compressor motor load is greater than 10% after shutdown or the starter contacts remain energized, the oil pump and chilled water pump remain energized and the alarm is displayed.

Restart: Restart is permitted after both inhibit timers have expired. If shutdown was due to a safety shutdown the reset button must be depressed prior to restarting the chiller.
Typical control wiring

LEGEND

CB — Circuit Breaker
HGBP — Hot Gas Bypass
G.V. — Guide Vane
LID — Local Interface
SMM — Starter Management Module
TB — Terminal Block

Required Power Wiring
Required Control Wiring
Options Wiring
Typical control wiring (cont)
Typical field wiring (medium-voltage machine shown)
NOTES FOR TYPICAL FIELD WIRING

NOTES:

I. GENERAL
1.0 Starters shall be designed and manufactured in accordance with Carrier Engineering requirement Z-375.
1.1 All field-supplied conductors, devices and the field-installation wiring, termination of conductors and devices must be in compliance with all applicable codes and job specifications.
1.2 The routing of field-installed conduit and conductors and the location of field-installed devices must not interfere with equipment access of the reading, adjusting, or servicing of any component.
1.3 Equipment installation and all starting and control devices must comply with details in equipment submittal drawings and literature.
1.4 Contacts and switches are shown in the position they would assume with the circuit deenergized and the chiller shut down.
1.5 WARNING: Do not use aluminum conductors.
1.6 Installer is responsible for any damage caused by improper wiring between starter and machine.

II. POWER WIRING TO STARTER
2.0 Power conductor rating must meet minimum unit nameplate voltage and compressor motor RLA (rated load amps). When (3) conductors are used:
Minimum ampacity per conductor = 1.25 x compressor RLA.
When (6) conductors are used:
Minimum ampacity per conductor = 0.721 x compressor RLA.
2.1 Lug adapters may be required if installation conditions dictate that conductors be sized beyond the minimum ampacity required. Contact starter supplier for lug information.
2.2 Compressor motor and controls must be grounded by using equipment grounding lugs provided inside starter enclosure.

III. CONTROL WIRING
3.0 Field supplied control conductors to be at least 18 AWG (American Wire Gage) or larger.
3.1 Chilled water and condenser water flow switch contacts, optional remote start device contacts, and optional spare safety device contacts must have 24 vdc rating. Maximum current is 60 mA; nominal current is 10 mA. Switches with gold plated bifurcated contacts are recommended.
3.2 Remove jumper wire between 12A and 12B before connecting auxiliary safeties between these terminals.
3.3 Maximum load on pilot relays is 10 amps. Pilot relays can control cooler and condenser pump and tower fan motor contactor coil loads rated up to 10 amps at 115 vac or up to 3 amps at 600 vac. Control wiring required for Carrier to start pumps and tower fan motors must be provided to assure machine protection. If primary pump and tower motor control is by other means, also provide a parallel means for control by Carrier. Do not use starter control transformer as the power source for pilot relay loads.

3.4 Do not route control wiring carrying 30 v or less within a conduit which has wires carrying 50 v or higher or along side wires carrying 50 v or higher.
3.5 Voltage selector switch in machine power panel is factory set for 115 v control and oil heater power source. The 230 v position is not used. If switch is set to 230 v position, oil heater will not operate.
3.6 Control wiring cables between starter and power panel must be shielded with minimum rating of 600 v, 60 C. Ground shield at starter. 5 mm communication cable must be separate.
3.7 If optional oil pump circuit breaker is not supplied within the starter enclosure as shown, it must be located within sight of the machine with wiring routed to suit.

IV. POWER WIRING BETWEEN STARTER AND COMPRESSOR MOTOR
4.0 Medium voltage (over 600 volts) compressor motors have 3 terminals. Connections out of hermetic motor terminals are 3 in long stranded wire pigtail, no. 4 AWG for DF-DJ motor sizes, no. 1 AWG for DK-DQ and EA-EE motor sizes. Distance between terminals are 79/16 inches. Use suitable splice connectors and insulation for high-voltage alternating current cable terminations (these items are not supplied by Carrier). Compressor motor starter must have nameplate stamped to conform with Carrier requirement Z-375.
4.1 When more than one conduit is used to run conductors from starter to compressor motor terminal box, one conductor from each phase must be in each conduit to prevent excessive heating (e.g., conductors to motor terminals 1, 2, and 3 in one conduit, and those to 1, 2, and 3 in another).
4.2 Compressor motor power connections can be made through top, top rear, or sides of compressor motor terminal box by using holes cut by contractor to suit conduit. Flexible conduit should be used for the last few feet to the terminal box for unit vibration isolation. Use of stress cones may require an oversize (special) motor terminal box (not supplied by Carrier).
4.3 Compressor motor frame to be grounded in accordance with the National Electrical Code (NFPA-70) and applicable codes. Means for grounding compressor motor is a no. 4 AWG, 500 MCM pressure connector, supplied and located in the lower left side corner of the compressor motor terminal box.
4.4 Do not allow motor terminals to support weight of wire cables. Use cable supports and strain reliefs as required.
Typical piping and wiring

19EX CHILLER WITH FREE-STANDING STARTER

NOTES:
1. Wiring and piping shown are for general point-of-connection only and are not intended to show details for a specific installation. Certified field wiring and dimensional diagrams are available on request.
2. All wiring must comply with applicable codes.
3. Refer to Carrier System Design Manual for details regarding piping techniques.
4. Wiring not shown for optional devices such as:
 • Remote Start/Stop
 • Remote Alarms
 • Optional Safety Device
 • 4 to 20 mA Resets
 • Optional Remote Sensors
5. Oil pump disconnect may be located within the enclosure of Item 8 — Freestanding Compressor Motor Starter.

LEGEND
1 — Chilled Water Pump Starter
2 — Condenser Water Pump Starter
3 — Cooling Tower Fan Starter
4 — Condenser Water Pump
5 — Chilled Water Pump
6 — Disconnect
7 — Oil Pump Disconnect (See Note 5)
8 — Freestanding Compressor Motor Starter
9 — Chiller Auxiliary Power Panel

Piping
Control Wiring
Power Wiring
Guide specifications

Hermetic Centrifugal Chiller

Size Range: 1500 to 2200 Tons (5280 to 7740 kW) Nominal

Carrier Model Number: 19EX

Part 1 — General

1.01 SYSTEM DESCRIPTION

A. Microprocessor controlled liquid chiller utilizing two-stage hermetic centrifugal compressor with HFC-134a refrigerant. Chillers using CFC refrigerants such as CFC-11, CFC-12, or CFC-500 shall not be acceptable.

B. If a manufacturer proposes a liquid chiller utilizing HCFC-123 refrigerant, then the manufacturer shall include in the chiller price:
 1. A vapor activated alarm system consisting of all alarms, sensors, safeties, and ventilation equipment as required by ANSI/ASHRAE Standard 15 (latest edition) with the quotation. System shall be capable of responding to HCFC-123 levels of 30 ppm Allowable Exposure Limit (AEL).
 2. External refrigerant storage tank, pumpout unit, and interconnecting piping.
 3. High efficiency purge unit.
 4. Relief valve installed in series with rupture disk.
 5. A device to prevent an off-line chiller from staying in vacuum at idle and also to act as a manual leak pressurization/detection device during service, equal to PREVAC® as manufactured by Mechanical Ingenuity, Inc. The device shall be factory installed.
 6. Labor and materials, including refrigerant, required to convert to HFC refrigerant while guaranteeing design tons and power consumption after conversion. Conversion will be performed any time within 20 years of start-up and after the new HFC refrigerant has been approved by NIOSH or similar authorities.

1.02 QUALITY ASSURANCE

A. Chiller performance shall be rated in accordance with ARI Standard 550 (latest edition), 60 Hz only.

C. Cooler and condenser, refrigerant and water side, shall include ASME “U” stamp and nameplate certifying compliance with ASME Section VIII, Division 1 code for unfired pressure vessels.

D. Chillers shall be designed and constructed to meet UL and UL of Canada requirements and have labels appropriately affixed.

E. Starter enclosure shall conform to NEMA 1.

F. Compressor impellers shall be over-speed tested by manufacturer to a minimum of 10% above operating conditions.

G. Controls shall meet all requirements on radiated and conducted radio-frequency emissions for Class A devices, defined in FCC Rules and Regulations, Part 15, Sub-part J.

H. Chiller, controls, and all available options shall meet ISO 9001 requirements.

1.03 DELIVERY, STORAGE, AND HANDLING

A. Unit shall be stored and handled in accordance with manufacturer’s instructions.

B. Unit shall be shipped with all refrigerant piping and control wiring factory-installed.

C. Unit shall be shipped with firmly attached metal plates that indicate name of manufacturer, chiller model number, compressor type, and refrigerant used.

1.04 WARRANTY

Warranty shall include parts and labor for one year after start-up or 18 months after shipment, whichever occurs first.

Part 2 — Products

2.01 EQUIPMENT

A. General:

Factory assembled, single-piece, liquid chillers shall consist of hermetic drive, internally geared compressor, motor, lubrication system, cooler, condenser, interstage flash economizer/refrigerant storage vessel, vibration isolation assembly, electrical microprocessor control system, and documentation required prior to start-up. The initial compressor oil charge shall be factory-installed in the chiller. The initial refrigerant charge shall be supplied by the chiller manufacturer for field installation. Motor starter shall be supplied by the chiller manufacturer for field installation.

If heat exchangers and compressor-drive are not supplied as a single piece from the factory, the unit shall include:

1. Rigid drive line steel base with compressor and drive factory-mounted and cold-aligned. Drive line water piping shall be terminated at a manifold at the edge of the base. All drive line wiring shall be terminated at a single terminal strip which is clearly labeled.

2. All refrigerant piping shall be cleaned, pickled, sealed, and nitrogen charged to prevent rust and scale build-up during storage. Installation of all refrigerant piping (including interconnecting pump-out piping) shall be the mechanical contractor’s responsibility.

3. Hydrostatic testing of the complete unit, including piping, at 1.5 times design pressure. Evacuation, drying, and charging of system after testing shall be provided by manufacturer’s start-up personnel.

In addition to water, vent, and utilities connections, all interconnecting tubing, wiring, and piping required to provide a complete ready-to-run unit shall be the responsibility of the mechanical contractor.

B. Compressor:

1. One internally geared centrifugal compressor of the high performance, two-stage type.

2. Compressor, motor, and transmission shall be arranged for easy service. Connections to the compressor shall be flanged for easy disassembly.

3. Transmission gears shall be of the double helical type and must be arranged for visual inspection without disassembly or removal of compressor casing or impeller.
4. The internal compressor housing shall be coated with epoxy paint to prevent oil penetration into the compressor casing.
5. Journal bearings shall be split-sleeve, steel back, babbitt-lined, and pressure lubricated.
6. Compressor to be supplied with variable inlet guide vanes for capacity control.
7. Thrust bearing shall be tilting pad self-leveling, babbitt-lined, Kingsbury-type with equalizer piston.
8. Compressor shall be provided with a factory installed lubrication system to deliver oil under pressure to bearings and transmission gears. Included in the system shall be:
 a. Hermetic, motor-driven oil pump.
 b. Water-cooled oil cooler.
 c. Oil pressure regulator.
 d. Twenty-micron oil filter with isolation valves.
 e. Oil pump starter factory-mounted on the chiller and factory-wired to pump motor and control circuit.
 f. Oil sump heater (115, 60 Hz) controlled from unit microprocessor.
 g. Oil reservoir temperature sensor with main control panel digital readout.
 h. Oil pump motor power supplied from a separate 200-240, 380-480, or 507-619 volt, 3 phase, 60 Hz power source.
 i. If oil pump starter is not factory mounted, all required extra field mounting and wiring shall be done at no additional cost to the owner.
9. Main compressor bearing housing shall be provided with a large, bolted access cover to provide access to main bearings and gear without any other disassembly required.

C. Motor:
1. Compressor motors shall be of the single speed, non-reversing, squirrel cage induction type suitable for the voltage shown on the equipment schedule.
2. Motor’s design speed shall be 3550 rpm at 60 Hz.
3. Hermetic motors shall be suitable for operation in a refrigerant atmosphere and shall be cooled by atomized subcooled refrigerant in contact with the motor windings.
4. Motor shall be arranged for service or removal with only minor disassembly and without breaking main refrigerant piping connections.
5. Full load operation of the motor shall not exceed nameplate rating.
6. Low-voltage motors (600 v or less) shall be built for connection to wye-delta type, reduced inrush starters.
7. Open motors shall be acceptable. If an open motor is provided, the contractor shall supply additional ventilation to maintain a maximum mechanical room temperature of 104 F (40 C). Additional ventilation requirements shall be calculated as follows:
\[
\text{CFM} = \frac{[(\text{Full load motor kW}) \times (0.05) \times 3413]}{[104-95] \times 1.08}
\]
\[
\text{CFM} = \text{(FLkW motor) 17.6}
\]
If the mechanical room is air conditioned, the mechanical contractor shall install additional capacity to dissipate the motor heat as per the following formula:
\[
\text{BTUH} = 0.5 \times (\text{FLkW motor}) \times 3413
\]
\[
\text{BTUH} = 171 \times (\text{FLkW motor})
\]
In either case, the additional piping, valves, insulation, wiring, switch gear changes, ductwork, and coordination with other trades shall be the responsibility of the mechanical contractor. Shop drawings reflecting any changes to the design shall be included in the submittal and incorporated into the final as-built drawings for the project. If an open motor is provided, a mechanical room thermostat shall be installed and set at 104 F (40 C). If this temperature is exceeded, the chillers shall shut down and an alarm signal will be generated to the central EMS display module prompting the service personnel to diagnose and repair the cause of the over temperature condition. The mechanical contractor shall be responsible for all changes to the design, including coordination with temperature control, electrical, and other trades.
8. If the chiller is an open-driven type, a motor-compressor shall collect any oil and refrigerant that leaks past the seal. A float device shall be provided to open when the reservoir is full, directing the refrigerant/oil mixture back into the compressor housing. Manufacturer shall warrant the shaft seal, reservoir, and float valve system against leakage of oil and refrigerant to the outside of the chiller for a period of 5 years from initial start-up. This shall include the parts and labor to replace a defective seal and any refrigerant required to trim the charge to original specifications.

D. Cooler and Condenser:
1. Cooler and condenser shall be in separate shells. Heat exchangers shall be fabricated with high performance copper tubing, steel shell-and-tube sheets, and fabricated steel waterboxes.
2. Tubing shall be copper, high-efficiency type, with integral internal and external fins. Tubes shall be nominal 3/4-in. OD with wall thickness of 0.025 in. (0.635 mm) measured at the root of the fin. Tubes shall be rolled into tube sheets, and shall be individually replaceable. End sheets shall be double grooved, for joint structural integrity. Cooler tubes shall be expanded into intermediate support sheets. Intermediate tube support sheet spacing shall not exceed 37 in. (940 mm).
3. Waterboxes shall be nozzle-in-head (NIH) design with connections designed for 150 psig (1034 kPa) maximum working pressure unless otherwise noted. Nozzles should have grooves to allow use of Victaulic couplings.
4. The vessel shall display an ASME nameplate which shows pressure and temperature data and the “U” stamp for ASME Section VIII, Division 1.
5. Waterboxes shall have vents, drains, and covers to permit tube cleaning within the space shown on the drawings. Suitable tapping shall be provided in waterboxes and nozzles for control sensors, gages, and thermometers.
6. Tubes shall be removable from either end of the heat exchanger without affecting strength and...
durability of the tube sheet and without causing leakage in adjacent tubes.

7. The condenser shell shall include a thermal economizer which cools the condensed liquid refrigerant to a reduced temperature, thereby increasing the refrigeration cycle efficiency.

8. The tube sheets of the cooler, condenser, and economizer/storage vessel shall be bolted together to allow for field disassembly and reassembly.

9. Unit manufacturer shall provide a factory-installed refrigerant filter drier on the machine.

10. Safety relief valves shall be installed on the cooler.

11. Cooler shall be designed to prevent liquid refrigerant from entering the compressor. Devices that introduce pressure losses (such as eliminators) shall not be acceptable. These devices are subject to structural failures that result in compressor damage and require extensive repair.

E. Interstage Flash Economizer/Storage Vessel:
 1. Unit shall include an interstage flash economizer/storage vessel that shall be an integral part of the chiller.
 2. The vessel shall be large enough to hold the entire refrigerant charge.
 3. To improve part load performance, liquid refrigerant shall be metered from the condenser to the cooler using a float type metering valve to maintain the proper liquid level of refrigerant in the heat exchangers under both full load and part load operating conditions. By maintaining a liquid seal, bypassed hot gas from the condenser to the cooler is eliminated. The float valve chambers shall have bolted access covers.
 4. Isolation valves shall be factory installed on the condenser liquid line, cooler liquid line, and economizer gas line. These valves shall allow isolation of the refrigerant charge in the economizer/storage vessel during chiller service.

F. Insulation:
 1. Chillers provided with insulation applied at the chiller manufacturer’s factory shall require the waterbox and chilled water piping to be insulated by the contractor.
 2. Chillers provided with no insulation shall be insulated at the jobsite per manufacturer’s instructions.
 3. Insulation shall be 3/4-in. (19 mm) thick with a thermal conductivity not exceeding 0.28 Btu · in. / hr · ft · °F (0.0404 W / m · °C) and shall form with UL (Underwriters’ Laboratories) Standard 94, have classification 94 HBF.

G. Vibration Isolation:
 1. Chiller manufacturer shall furnish isolator pads for mounting equipment on a level concrete pad surface.
 2. If the equipment room floor is not level, the chiller should be ordered with accessory soleplates, jacking screws and leveling pads for field installation.

H. Controls:
 1. The chiller shall be provided with a factory installed and wired microprocessor control center with individually replaceable, modular components construction. Components included shall be the main processor/input-output module, power supply, starter management module (located in starter cabinet), relay board, temperature and pressure (thermistor and transducer) sensors. An optional input module (8 input channels) can be factory or field-installed. The control center includes a 16-line by 40 character liquid crystal display, 4 function keys, stop button, and alarm light. The microprocessor can be configured to display either English or SI units.

2. The default standard display screen shall simultaneously indicate the following information:
 a. Date and time of day
 b. 24-character primary system status message
 c. 24-character secondary status message
 d. Chiller operating hours
 e. Entering chilled water temperature
 f. Leaving chilled water temperature
 g. Evaporator refrigerant temperature
 h. Entering condenser water temperature
 i. Leaving condenser water temperature
 j. Condenser refrigerant temperature
 k. Oil differential pressure
 l. Oil sump temperature
 m. Percent motor rated load amps (RLA)

 The default screen shall be displayed if there is no manual activity at the control console for 15 minutes.

3. The 4 function keys are identified at STATUS, SCHEDULE, SET POINT, and SERVICE:
 a. Status Functions:
 1) Evaporator pressure
 2) Condenser pressure
 3) Compressor discharge temperature
 4) Bearing oil supply temperature
 5) Motor winding temperature or motor winding temperature switch
 6) Quantity of compressor starts
 7) Control point settings
 8) Discrete output status of various devices
 9) Compressor motor stater status

 b. Schedule Function:
 Start-up and shutdown shall be manual or automatic. Automatic operation is activated by the user establishing an occupancy schedule based on a 365-day, real-time clock that shall automatically start and stop the chiller according to a configurable stored time. A minimum of 8 separate occupied or unoccupied periods may be scheduled by the user. The periods can have any day of the week or holiday assigned to the occupied or unoccupied periods. Up to 18 user-defined holidays can be configured up to one year in advance (month, day, and duration in days). Simultaneous display of the occupancy schedules shall be visible on the LCD screen. The chiller can also be started and stopped remotely by contact closure from a customer-supplied relay (once this option
has been activated in the configuration mode), or from a building management system software command.

c. Set Point Function:
The leaving chilled water set point, entering chilled water set point, and demand limit set point shall be entered, stored, viewed, or changed by depressing the set point function key. The operator shall be able to modify these set points by entering the set point function and modifying the set points anytime during chiller operation or shutdown periods.

d. Service Function:
By depressing the service function key and entering a 4-digit password, the operator shall be able to:
1) View the alarm history file which contains up to 25 alarm/alert messages with time and date stamp.
2) Execute the chiller controls test function for quick identification of malfunctioning components.
3) View/modify chiller configuration.
4) View/modify chiller occupancy periods.
5) View/modify schedule holiday periods.
6) View/modify schedule override periods.
7) View/modify system time and date.

4. Capacity control shall be by means of variable inlet guide vanes located at the impeller inlet. Load modulation shall be from 100% to 10% of full load under normal ARI conditions without the use of hot gas bypass. The guide vanes are precisely positioned by the PID (proportional-integral-derivative) control algorithm to ensure precise control (± .5 F or .3 C) of desired chilled water temperature without hunting or overshooting the set point.

5. The microprocessor control system shall include a programmed sequence to meet pre-lube and post-lube needs prior to machine start-up and during coast-down after machine stop. The microprocessor shall automatically activate and interlock the chilled water pump, condenser water pump, and cooling tower fans upon chiller activation.

6. Upon request to start the compressor the control system shall start the chilled water pump, condenser water pump, and enable tower fan control; verify that flow has been established; and then compare leaving chilled water temperature with the chilled water set point. If the chilled water temperature is less than the chilled water set point, the control system will shut down the condenser water pump and wait for the cooling load to be established.

7. A user-configurable ramp loading rate, effective during the chilled water temperature pulldown period, slows the rate of guide vane opening to prevent a rapid increase in compressor power consumption. Ramp loading limits the rate (degrees/minute) of chilled water temperature pulldown or percent demand limit to the user-configurable rate. During the ramp loading period, a message shall be displayed informing the operator that the chiller is operating in ramp loading mode.

8. The control system shall include 2 compressor cycle-timers to protect the motor from rapid cycling. The start-inhibit timer shall prevent rapid compressor restart by limiting the start-to-start time to 15 minutes minimum and stop-to-start time to 1 minute minimum. In addition, the compressor will be inhibited from restarting if more than 8 manual starts per 12-hour period have occurred.

9. The control system shall automatically cycle the compressor off to minimize energy usage whenever the leaving chilled water temperature is 5 F (3 C) below the desired chilled water set point. The chilled water pump will remain on. When the leaving chilled water temperature rises above the desired set point, the compressor will automatically restart. During the shutdown period, a message shall be displayed informing the operator a recycle restart is pending.

10. The control center shall monitor line voltage. If loss of voltage, high or low line voltage, or single cycle dropout is sensed, the chiller will shut down. Upon restoration of line voltage, if the auto-start after power failure algorithm was activated in the configuration mode, the chiller shall automatically restart and resume the mode of operation prior to shutdown.

11. The control center will allow reset of chilled water temperature set point based on any one of the following criteria:
a. Chilled water reset based on an external 4 to 20 mA signal.
b. Chilled water reset based on a remote temperature sensor (such as outdoor air).
c. Chilled water reset based on water temperature rise across the evaporator.

When reset is active, a message shall be displayed indicating the source of reset signal.

12. The control center will limit amp draw of the compressor to the rated load amps or to a value lower based on the following criteria:
a. Demand limit based on a user input ranging from 40% to 100% of compressor rated load amps.
b. Demand limit based on an external 4 to 20 mA signal.

When demand limit is active, a message shall be displayed indicating the source of the demand signal.

I. Safeties:
1. Unit shall automatically shut down when any of the following conditions occur: (Each of these protective limits shall require manual reset and cause an alarm message to be displayed on the LCD screen informing the operator of the shut-down cause.)
a. Motor overcurrent
b. Over voltage
c. Under voltage
d. Single cycle dropout
e. Bearing oil high temperature
f. Low evaporator refrigerant temperature
g. High condenser pressure
h. High motor temperature
i. High compressor discharge temperature
j. Low oil pressure
k. Prolonged surge
l. Loss of cooler water flow
m. Loss of condenser water flow
n. Starter fault
o. Loss of power
p. Excess acceleration time

2. The control system shall detect conditions which approach protective limits and take self-corrective action prior to an alarm occurring. The system shall automatically reduce chiller capacity when any of the following is out of normal operating range:
 a. High condenser pressure
 b. High motor temperature (hermetic motors only)
 c. Low evaporator refrigerant temperature

During the capacity override period, a pre-alarm (alert) message shall be displayed informing the operator which condition is causing the capacity override. Once the condition is again within acceptable limits, the override condition shall be terminated and the chiller will revert to normal chilled water control. If during either condition the protective limit is reached, the chiller will shut down and a message will be displayed informing the operator which condition caused the shutdown and alarm.

J. Diagnostics and Service:

1. The control system shall execute a series of pre-start checks whenever a start command is received to determine if pressures, temperatures, and times are within normal limits, thereby allowing a normal start-up to commence. If any of the limits are exceeded, an alert message will be displayed informing the operator of the cause of the prestart alert.

2. A self-diagnostic control test shall be an integral part of the control system to allow quick identification of malfunctioning components. Once the control test has been initiated, all pressure and temperature sensors shall be checked to ensure they are within normal operating range. A pump test will automatically energize the chilled water pump, condenser water pump, and oil pump. The control system will confirm that water flow and oil pressure have been established and require operator confirmation prior to proceeding to the next test. A guide vane actuator test shall open and close the guide vanes to check for proper operation. The operator manually acknowledges proper guide vane operation prior to proceeding to the next test.

In addition to the automated control test, a thermistor test and transducer test shall allow display on the LCD screen of the actual reading of each transducer and each thermistor installed on the chiller. All sensors shall have quick disconnects to allow replacement of the sensor without replacement of the entire sensor wire.

K. Building Control System Interface:
The chiller control system shall have the ability to interface and communicate directly to the building control system without the use of additional field installed hardware or software. The building control system and the centrifugal chiller must be supplied by the same manufacturer.

L. Multiple Chiller Control:
The chiller controls shall be supplied as standard with a two chiller lead/lag with third chiller standby system. The control system shall automatically start and stop a lag or second chiller on a two chiller system. If one of the two chillers on line goes into a fault, the third standby chiller shall be automatically started. The two chiller lead/lag system shall allow manual rotation of the lead chiller, include load balancing, if configured, and staggered restart of the chillers after a power failure. For systems with greater than two operational chillers, a Chillervisor System Manager (CSM) module shall be field installed in the control center of one of the chillers. This control system can automatically control up to 8 chillers in the same plant room. If desired, other components of the chiller water plant, such as cooling towers, pumps, and valves can be controlled by additional software supplied by the chiller manufacturer.

M. Electrical Requirements:
Electrical Contractor shall:
1. Handle and install the compressor motor starter in accordance with the diagrams and instructions of the chiller manufacturer.
2. Supply and install all electric lines, disconnect switches, circuit breakers, electrical protection devices, and motor terminal lugs.
3. Wire the water flow switches in the control circuit to ensure that chiller will not operate until flows are established and maintained.
4. Supply electrical power to the oil pump starter and oil heater contactor terminals with the characteristics as noted in the equipment schedule. Supply shall be independent of main compressor motor breaker or disconnect.
5. Supply electrical power to the unit at the voltage, phase, and frequency listed in the equipment schedule.

N. Piping Requirements:
Mechanical Contractor shall:
1. Supply and install the water piping to the nozzles of the cooler and condenser and shall make provisions for removal and replacement of piping when required to provide access for cleaning the cooler and condenser tubes.
2. Make water connections to all water supply drain and vent connections as required by equipment drawings and local codes.
3. Supply and install refrigerant vent (relief) lines to outdoors as required on equipment drawings.
4. Supply and install pressure gages in readily accessible locations in piping adjacent to the chiller such that they can be easily read from a standing position on the floor. Gages shall be Marsh
Master or equal with 41/2-in. (114 mm) nominal diameter dial face. Scale range shall be such that design values shall be indicated at approximately mid-scale. Gages shall be installed in the entering and leaving water lines to the cooler and condenser.

5. Supply and install thermometers in readily accessible locations in piping adjacent to the chiller such that they can be easily read from a standing position on the floor. Thermometers shall be Moeller or equal; adjustable, mercury-filled, with 7-in. (178 mm) long glass-faced metal cases, separable sockets and wells. Bulbs shall project sufficiently into the pipe to accurately measure fluid temperature. Cases shall have extensions of sufficient length to clear insulation. Thermometers shall be installed in the entering and leaving water lines to the cooler and condenser.

6. Supply and install United Electric differential pressure switches or equal flow switches in chilled water and condenser water piping. Switches shall make contact when flow is established. Flow switches shall be installed in horizontal runs at least five pipe diameters downstream from any bend or tee.

O. Start-up:
1. The chiller manufacturer shall provide a factory-trained representative, employed by the chiller-manufacturer, to perform the start-up procedures as outlined in the Start-Up, Operation and Maintenance manual provided by the chiller manufacturer.
2. After the above services have been performed, the same factory-trained representative shall be available for a period of classroom instruction not to exceed an 8-hour day to instruct the owner’s personnel in the proper operation and maintenance of the chiller.
3. Contractor shall supply the owner with the following literature as furnished by the manufacturer prior to start-up:
 a. One complete set of installation drawings.
 b. Installation Instructions.
 c. Start-Up, Operation and Maintenance Instructions.
 d. Field wiring diagrams.

P. Field-Installed Accessories:
The following standard accessories are available for field installation:
1. Soleplate Package:
 Unit manufacturer shall furnish a soleplate package consisting of soleplates, jacking screws, leveling pads, and neoprene pads.
2. Spring Isolators:
 Field furnished and selected for the desire degree of isolation.
3. Spare Sensors with Leads:
 Unit manufacturer shall furnish additional temperature sensors and leads to be used in conjunction with the controls options module upgrade kit.
4. Control Options Module Upgrade Kit:
 Unit manufacturer shall furnish an 8-input control module required to provide chilled water reset from 4 to 20 mA signal or remote temperature sensor, auto demand limit from 4 to 20 mA signal, or monitoring common supply and return chilled water temperature for multiple chiller control. Accessory includes options transformer for installation in power panel. The 8-input module shall be capable of generating a 20 mA current supply for modulation by others or accepting a 4 to 20 mA input from others.

5. Sound Insulation Kit:
 Unit manufacturer shall furnish a sound insulation kit that covers the compressor housing, motor housing (when motor is hermetic) compressor discharge pipe, condenser shell, condenser liquid line, and economizer gas pipe.
 a. Inner and outer jacket construction shall be 17 oz/sq yd PTFE impregnated fiberglass cloth.
 b. Insulation material shall be 11 lb/cu ft fiberglass needle material with Barium Sulfate loaded vinyl acoustic barrier.
 c. Blanket construction shall be double sewn and locked stitched with minimum of 7 stitches per inch using Teflon-coated, fiberglass thread. All raw jacket edges shall have a tri-fold Teflon cloth binding. No raw cut edges shall be exposed.
 d. Insulation design shall accommodate temperature and pressure probes, gages, tubing, piping, and brackets.
 e. To avoid penetrating noise at mating seams, blanket pieces shall include an extended 2-in. wide vinyl flap. This flap shall cover all exposed seams, thereby minimizing any potential noise leaks.
 f. An aluminum nameplate shall be riveted to each blanket piece. Each tag shall be embossed or etched with lettering indicating piece location, description, size, pressure rating, and tag number sequence.
 g. To enhance blanket quality and maintain uniform thickness, stainless steel quilting pins shall be placed at random locations no greater than 18 in. apart to prevent shifting of the insulation filler.

6. Flow Switches:
 Furnished by unit manufacturer or field furnished.

Q. Factory-Installed Option:
The following standard options, if selected, are factory installed. Certain options will supersede the standard features listed previously, and are indicated by an (*).

* 1. Thermal Insulation:
 Unit manufacturer shall insulate the cooler shell, economizer low side compressor suction elbow, motor shell and motor cooling lines (on hermetic motors only), and all interconnecting piping and tubes. Insulation shall be 3/4-in. (19 mm) thick with a thermal conductivity not exceeding 0.28 Btu · in. (0.0404 W · m) and shall form with UL Standard 94, have classification 94 HBF.
Guide specifications (cont)

2. Automatic Hot Gas Bypass:
 Hot gas bypass valve and piping, designed to artificially load the evaporator, shall be factory furnished to permit chiller operation down to 5% or full load capacity for extended periods of time.

3. Controls Option Module:
 Unit manufacturer shall install an 8-input control module required to provide chilled water reset from 4 to 20 mA signal or remote temperature sensor, auto demand limit from 4 to 20 mA signal or monitoring common supply and return chilled water temperature for multiple chiller control. Option includes transformer in power panel.

4. Hinged Waterbox Covers:
 Unit manufacturer shall install hinges on the cooler and/or condenser waterbox cover(s) to facilitate tube cleaning. Each cover designated to be hinged shall incorporate 2 hinges with jacking screws to ensure proper cover support and alignment.

5. Cooler and Condenser Tubes:
 a. Unit manufacturer shall provide 3/4-in. outside diameter copper tubes in the cooler and/or condenser that are internally enhanced and have 0.028-in. wall thickness.
 b. Unit manufacturer shall provide 3/4-in. outside diameter copper tubes in the cooler and/or condenser that are internally enhanced and have 0.035-in. wall thickness.

6. Cooler and Condenser Passes:
 a. Unit manufacturer shall provide the cooler and/or condenser with 1 pass configuration on the water side.
 b. Unit manufacturer shall provide the cooler with 3 pass configuration on the water side.

7. Nozzle-In-Head, 300 psig (2068 kPa):
 Unit manufacturer shall furnish nozzle-in-head style waterboxes on the cooler and/or condenser rated at 300 psig (2068 kPa).

8. Marine Waterboxes, 150 psig (1034 kPa):
 Unit manufacturer shall furnish marine style waterboxes on the cooler and/or condenser rated at 150 psig (1034 kPa).

9. Marine Waterboxes, 300 psig (2068 kPa):
 Unit manufacturer shall furnish marine style waterboxes on the cooler and/or condenser rated at 300 psig (2068 kPa).

10. Flanged Water Nozzles:
 Unit manufacturer shall furnish standard flanged piping connections on the cooler and/or condenser.

11. Factory Performance Test:
 Unit manufacturer shall provide a certified (non-witnessed) or witnessed single point performance test per the latest version of ARI-550 test procedures. Additional points shall be available as an option.

12. Pumpout Unit:
 A refrigerant pumpout system shall be installed on the chiller. The pumpout system shall include a 3-hp compressor and drive, piping, wiring, and motor. The storage vessel shall be integral to the machine, external to the unit cooler or condenser shells and shall be large enough to hold the entire refrigerant charge. Isolation of the refrigerant in the cooler or condenser during servicing shall be unacceptable.